Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T03:38:48.124Z Has data issue: false hasContentIssue false

Infrared Studies of 1-Hexene Adsorbed onto Cr3+-Exchanged Montmorillonite

Published online by Cambridge University Press:  02 April 2024

John M. Adams
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, Dyfed SY23 1NE United Kingdom
Terry V. Clapp
Affiliation:
Edward Davies Chemical Laboratories, University College of Wales, Aberystwyth, Dyfed SY23 1NE United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

When 1-hexene was adsorbed by Cr3+-montmorillonite at room temperature, all evidence of C=C(str) vibrations was lost. Protonation of the alkene occurred, and the secondary carbocation formed was bound at a site on the primary coordination sphere of the interlayer cation. Some of the hydrogen atoms of these primary-sphere water molecules were involved in strong hydrogen bonds to the silicate sheets, whereas others did not form such bonds, but were free and directed into the interlayer space. These latter hydrogen atoms were labile and protonated the alkene molecules.

Резюме

Резюме

После адсорбции 1-гексена на Cr3+-монтмориллоните при комнатной температуре, исчезло все доказательство колебаний С=С (растягиваний). Появлялось протонирование алкенов, а вторичный образованный катион углерода был связан в основной координационной сфере межслойных катионов. Некоторые атомы водорода молекул воды этих основных сфер были связаны сильными водородными связями с силикатовыми слоями, в то время, как другие атомы не образовывали таких связей, а оставались свободными и направлялись в межслойное пространство. Эти свободные атомы водорода являлись неустойчивыми и протонировали молекулы алкенов. [E.G.]

Resümee

Resümee

Wenn 1-Hexen bei Raumtemperatur an Cr3+-Montmorillonit adsorbiert wird, so gibt es für C=C(str)-Schwingungen keinen Hinweis mehr. Protonierung der Alkene trat ein, und die auftretende sekundäre Carbonierung war an eine Stelle der primären Koordinationshülle des Zwischenschichtkations gebunden. Einige der Wasserstoffatome dieser primären Wassermolekülhülle waren durch eine starke Wasserstoffbindung an die Silikatschicht gebunden, während andere keine derartige Bindung aufwiesen sondern ungebunden und in den Zwischenschichtraum ausgerichtet waren. Diese letzteren Wasserstoffatome waren labil und protonierten die Alkenmoleküle. [U.W.]

Résumé

Résumé

Lorsque l'hexène-1 a été adsorbée par la montmorillonite-Cr3+ à température ambiante, toute evidence de vibrations C=C(str) a été perdue. La protonation de l'alkalène s'est produite, et la carbocation secondaire formée a été liée à un site sur la sphère de coordination primaire de cation intercouche. Certains atomes d'hydrogène de ces molécules d'eau de sphère primaire ont été impliqués dans de très fortes liaisons d'hydrogène avec les feuillets silicates, tandis que d'autres n'ont pas formé de telles liaisons, mais étaient libres et se sont dirigés vers l'espace intercouche. Ces derniers atomes d'hydrogène étaient labiles et ont protonaté les molécules alkalènes. [D.J.]

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

References

Adams, J. M., Ballantine, J. A., Graham, S. H., Laub, R. J., Purnell, J., Reid, P. I., Shaman, W. Y. M. and Thomas, J. M., 1978 Organic synthesis using sheet silicate intercalates: low temperature conversion of olefin to secondary ether Angew. Chemie Int. Ed 17 282283.CrossRefGoogle Scholar
Adams, J. M., Ballantine, J. A., Graham, S. H., Laub, R. J., Purnell, J. H., Reid, P. I., Shaman, W. Y. M. and Thomas, J. M., 1979 Selective chemical conversions using sheet silicate intercalates: low temperature addition of water to 1-alkenes J. Catal 58 239252.CrossRefGoogle Scholar
Adams, J. M., Bylina, A. and Graham, S. H., 1981 Shape selectivity in low-temperature reactions of C6-alkenes catalyzed by a Cu2+-exchanged montmorillonite Clay Miner 16 325332.CrossRefGoogle Scholar
Adams, J. M., Clement, D. E. and Graham, S. H., 1981 Low temperature reactions of alcohols to form t-butyl ethers using clay catalysts J. Chem. Res S 254255.Google Scholar
Adams, J. M., Bylina, A. and Graham, S. H., 1982 Conversion of 1-hexene to di-2-hexyl ether using a Cu2+-smectite catalyst J. Catal 75 190195.CrossRefGoogle Scholar
Adams, J. M., Clement, D. E. and Graham, S. H., 1982 Synthesis of methyl-t-butyl ether (MTBE) from methanol and isobutene using a clay catalyst Clays & Clay Minerals 30 129134.CrossRefGoogle Scholar
Adams, J. M., Davies, S. E., Graham, S. H. and Thomas, J. M., 1982 Catalyzed reactions of organic molecules at clay surfaces: ester breakdown, dimerization and lactonizations J. Catal 78 197208.CrossRefGoogle Scholar
Adams, J. M., Clement, D. E. and Graham, S. H., 1983 Reactions of alcohols with alkenes over an aluminum-exchanged montmorillonite Clays & Clay Minerals 31 129136.CrossRefGoogle Scholar
Adams, J. M., Clapp, T. V. and Clement, D. E., 1983 Catalysis by montmorillonites Clay Miner 18 411421.CrossRefGoogle Scholar
Ballantine, J. A., Davies, M., Purnell, J. H., Rayanakorn, M., Thomas, J. M. and Williams, K. J., 1981 Chemical conversions using sheet silicates: facile ester synthesis by direct addition of acids to alkenes J. Chem. Soc. Chem. Comm 89.CrossRefGoogle Scholar
Ballantine, J. A., Davies, M., Purnell, J. H., Rayanakorn, M., Thomas, J. M. and Williams, K. J., 1981 Chemical conversions using sheet silicates: novel intermolecular dehydration of alcohols to ethers and polymers J. Chem. Soc. Chem. Comm 427428.CrossRefGoogle Scholar
Brindley, G. W., 1972 The structure of the micas and related materials—a review Mat. Res. Bull 7 11911200.CrossRefGoogle Scholar
Bylina, A., Adams, J. M., Graham, S. H. and Thomas, J. M., 1980 Chemical conversions using sheet silicates: a simple method for producing methyl t-butyl ether (MTBE) J. Chem. Soc. Chem. Comm 10031004.CrossRefGoogle Scholar
Clementz, D. M., Pinnavaia, T. J. and Mortland, M. M., 1973 Stereochemistry of hydrated Cu(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study J. Phys. Chem 77 196200.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D., 1971 Interlayer complexes in layer silicates Trans. Faraday Soc 67 27372749.CrossRefGoogle Scholar
Mortland, M. M. and Holmes, J. W., 1968 Protonation of compounds at clay mineral surfaces 9th Int. Congr. Soil Sci. Trans New York Elsevier 691699.Google Scholar
Mortland, M. M., 1970 Clay-organic complexes and interactions Adv. Agron 22 75117.CrossRefGoogle Scholar
Mortland, M. M. and Raman, K. V., 1968 Surface acidity of smectites in relation to hydration, exchangeable cation and structure Clays & Clay Minerals 16 393398.CrossRefGoogle Scholar
Pinnavaia, T. J. and Smith, G. V., 1977 Metal catalyzed reactions in the intracrystalline space of layer lattice silicates Catalysis in Organic Synthesis New York Acad. Press 131138.Google Scholar
Pinnavaia, T. J., Raythatha, R., Guo-Shuh Lee, J., Halloran, L. J. and Hoffman, J. F., 1979 Intercalation of catalytically active metal complexes in mica-type silicates. Rhodium hydrogenation catalysts J. Amer. Chem. Soc 68916897.CrossRefGoogle Scholar
Pinnavaia, T. J. and Raythatha, R., 1983 Clay intercalation catalysts interlayered with rhodium phosphine complexes. Surface effects on the hydrogenation and isomerisation of 1-hexene J. Catal 80 4755.Google Scholar
Reid, P. I., 1978 Some physical and chemical aspects of sheet silicates 148151.Google Scholar
Russell, J. D. and Farmer, V. C., 1964 Infrared spectroscopic study of the dehydration of montmorillonite and saponite Clay Miner. Bull 5 443464.CrossRefGoogle Scholar