Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-29T18:21:43.148Z Has data issue: false hasContentIssue false

The morphological spectrum of ventricular noncompaction

Published online by Cambridge University Press:  13 July 2005

Robert M. Freedom
Affiliation:
Division of Cardiology, Department of Paediatrics, The University of Toronto Faculty of Medicine, Ontario, Canada Department of Paediatric Laboratory Medicine, The University of Toronto Faculty of Medicine, Ontario, Canada Division of Cardiac Imaging, Department of Diagnostic Imaging, The Hospital for Sick Children and Departments of Paediatrics, Laboratory Medicine and Pathology and Medical Imaging, The University of Toronto Faculty of Medicine, Ontario, Canada
Shi-Joon Yoo
Affiliation:
Division of Cardiac Imaging, Department of Diagnostic Imaging, The Hospital for Sick Children and Departments of Paediatrics, Laboratory Medicine and Pathology and Medical Imaging, The University of Toronto Faculty of Medicine, Ontario, Canada
Don Perrin
Affiliation:
Department of Paediatric Laboratory Medicine, The University of Toronto Faculty of Medicine, Ontario, Canada
Glenn Taylor
Affiliation:
Department of Paediatric Laboratory Medicine, The University of Toronto Faculty of Medicine, Ontario, Canada
Steffen Petersen
Affiliation:
University of Oxford Centre for Clinical Magnetic Resonance Research, University College London, London, United Kingdom
Robert H. Anderson
Affiliation:
Cardiac Unit, Institute of Child Health, University College London, London, United Kingdom

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Continuing Medical Education
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium: a study of eight cases. Circulation 1990; 82: 507513.Google Scholar
Jenni R, Oechslin E, Schneider J, Jost CA, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 2001; 86: 666671.Google Scholar
Jenni R, Rojas J, Oechslin E. Isolated noncompaction of the myocardium. N Engl J Med 1999; 340: 966967.Google Scholar
Weiford BC, Subbarao VD, Mulhern KM. Noncompaction of the ventricular myocardium. Circulation 2004; 109: 29652971.Google Scholar
Stöllberger C, Finsterer J. Left ventricular hypertrabeculation/ noncompaction. J Am Soc Echocardiogr 2004; 17: 91100.Google Scholar
Jenni R, Goebel N, Tartini R, Schneider J, Arbenz U, Oelz O. Persisting myocardial sinusoids of both ventricles as an isolated anomaly: echocardiographic, angiographic, and pathologic anatomic findings. Cardiovasc Interv Radiol 1986; 9: 127131.Google Scholar
Engberding R, Bender F. Identification of a rare congenital anomaly of the myocardium by two-dimensional echocardiography. Persistence of isolated myocardial sinusoids. Am J Cardiol 1984; 53: 17331734.Google Scholar
Chenard J, Samson M, Beaulieu M. Embryonal sinusoids in the myocardium. Report of a case successfully treated surgically. Can Med Assoc J 1965; 92: 13561359.Google Scholar
Allenby PA, Gould NS, Schwartz MF, Chiemmongkoltip P. Dysplastic cardiac development presenting as a cardiomyopathy. Arch Pathol Lab Med 1988; 112: 12551258.Google Scholar
Amann G, Sherman FS. Myocardial dysgenesis with persistent sinusoids in a neonate with Noonan's syndrome. Pediatr Pathol 1992; 12: 8392.Google Scholar
Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology task force on the Definition and Classification of Cardiomyopathies. Circulation 1996; 98: 841842.Google Scholar
Varnava AM. Isolated left ventricular non-compaction: a distinct cardiomyopathy? Heart 2001; 86: 599600.Google Scholar
Wong SP, Oldfield M, Ko AP, Kerr AJ. Ventricular non-compaction: a rare cause of heart failure. Intern Med J 2003; 33: 262263.Google Scholar
Baumhakel M, Kindermann I, Kindermann M, Schneider G, Hennen B, Bohm M. Isolated noncompaction of ventricular myocardium syndrome: a rare structural heart disease. Dtsch Med Wochenschr 2003; 128: 562567.Google Scholar
Buonanno C, Variola A, Dander B, Gabaldo S, Marafioti V. Isolated noncompaction of the myocardium – an exceedingly rare cardiomyopathy: a case report. Ital Heart J 2000; 1: 301305.Google Scholar
McCrohon JA, Richmond DR, Pennell DJ, Mohiaddin RH. Images in cardiovascular medicine. Isolated noncompaction of the myocardium: a rarity or missed diagnosis? Circulation 2002; 106: E22E23.Google Scholar
Zambrano E, Marshalko SJ, Jaffe CC, Hui P. Isolated noncompaction of the ventricular myocardium: clinical and molecular aspects of a rare cardiomyopathy. Lab Invest 2002; 82: 117122.Google Scholar
Oechslin E, Jenni R. Guest editorial. Isolated left ventricular non-compaction: increasing recognition of the distinct, yet “unclassified” cardiomyopathy. Eur J Echocardiogr 2002; 3: 250251.Google Scholar
Ichida F, Hamamichi Y, Miyawaki T, et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol 1999; 34: 233240.Google Scholar
Ritter M, Oechslin E, Sutsch G, Attenhofer C, Schneider J, Jenni R. Isolated noncompaction of the myocardium in adults. Mayo Clin Proc 1997; 72: 2631.Google Scholar
Halbertsma FJ, van't Hek LGEM, Daniels O. Spongy cardiomyopathy in a neonate. Cardiol Young 2001; 11: 458460.Google Scholar
Ali SKM, Godman MJ. The variable clinical presentation and outcomes for noncompaction of the ventricular myocardium in infants and children, and under-diagnosed cardiomyopathy. Cardiol Young 2004; 14: 409416.Google Scholar
Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 2000; 36: 493500.Google Scholar
Neudorf UE, Hussein A, Trowitzsch E, Schmaltz AA. Clinical features of isolated noncompaction of the myocardium in children. Cardiol Young 2001; 11: 439442.Google Scholar
Kohl T, Villegas M, Silverman N. Isolated noncompaction of ventricular myocardium detection during fetal life. Cardiol Young 1995; 5: 187189.Google Scholar
Winer N, Lefevre M, Nomballais MF, et al. Persisting spongy myocardium: a case indicating the difficulty of antenatal diagnosis. Fetal Diagn Ther 1998; 13: 227232.Google Scholar
Moura C, Hillion Y, Daikha-Dahmane F, et al. Isolated non-compaction of the myocardium diagnosed in the fetus: two sporadic and two familial cases. Cardiol Young 2002; 12: 278283.Google Scholar
Guntheroth W, Komarniski C, Atkinson W, Fligner CL. Criterion for fetal spongiform cardiomyopathy: restrictive pathophysiology. Obstet Gynecol 2002; 99: 882885.Google Scholar
Pignatelli RH, McMahon CJ, Dreyer WJ, et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 2003; 108: 26722678.Google Scholar
Angelini A, Melacini P, Barbero F, Thiene G. Evolutionary persistence of spongy myocardium in humans. Circulation 1999; 99: 2475.Google Scholar
Victor S, Nayak VM, Rajasingh R. Evolution of the ventricles. Tex Heart Inst J 1999; 26: 168175.Google Scholar
Steiner I, Hrubecky J, Pleskot J, Kokstejn Z. Persistence of spongy myocardium with embryonic blood supply in an adult. Cardiovasc Pathol 1996; 5: 4751.Google Scholar
Dusek J, Ostadal B, Duskova M. Postnatal persistence of spongy myocardium with embryonic blood supply. Arch Pathol 1975; 99: 312317.Google Scholar
Burchell HB. Large vascular sinuses in the myocardium of a dog. Anat Rec 1939; 74: 195197.Google Scholar
Feldt RH, Rahimtoola H, Davis GD, Swan HJC, Titus JL. Anomalous ventricular myocardial patterns in a child with complex congenital heart disease. Am J Cardiol 1969; 23: 732734.Google Scholar
Gittenberger-de Groot AC, Tennstedh C, Chaoui R, Lie-Venema H, Sauer U, Poelmann RE. Ventriculo-coronary arterial communications (VCAC) and myocardial sinusoids in hearts with pulmonary atresia with intact ventricular septum: two different diseases. Prog Pediatr Cardiol 2001; 13: 157164.Google Scholar
Freedom RM, Mawson J, Yoo S-J, Benson LN. Congenital Heart Disease: Textbook of Angiocardiography. Futura Publishing Co., Armonk, NY, 1997, pp 617672.
Freedom RM, Mawson J, Yoo S-J, Benson LN. Congenital Heart Disease: Textbook of Angiocardiography. Futura Publishing Co., Armonk, NY, 1997, pp 731765.
Tsang JC-C, Chiu RC-J. The phantom of “myocardial sinusoids”: a historical reappraisal. Ann Thorac Surg 1995; 60: 18311835.Google Scholar
Anderson RH. Anatomy. In: Anderson RH, Baker E, Macartney F, Rigby ML, Shinebourne EA, Tynan M (eds). Paediatric Cardiology, 2nd edn. Churchill Livingstone, London, 2002, pp 3755.
Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol; In press.
Digilio MC, Marino B, Bevilacqua M, Musolino AM, Giannotti A, Dallapiccola B. Genetic heterogeneity of isolated noncompaction of the left ventricular myocardium. Am J Med Genet 1999; 85: 9091.Google Scholar
Boyd MT, Seward JB, Tajik AJ, Edwards WD. Frequency and location of prominent left ventricular trabeculations at autopsy in 474 normal human hearts: implications for evaluation of mural thrombi by two-dimensional echocardiography. J Am Coll Cardiol 1987; 9: 323326.Google Scholar
Luetmer PH, Edwards WD, Seward JB, Tajik AJ. Incidence and distribution of left ventricular false tendons: an autopsy study of 483 normal human hearts. J Am Coll Cardiol 1986; 8: 179183.Google Scholar
Malouf J, Gharzuddine W, Kutayli F. A reappraisal of the prevalence and clinical importance of left ventricular false tendons in children and adults. Br Heart J 1986; 55: 587591.Google Scholar
Abdulla AK, Frustaci A, Martinez JE, Florio RA, Somerville J, Olsen EG. Echocardiography and pathology of left ventricular “false tendons”. Chest 1990; 98: 129132.Google Scholar
Witter BA, De Cristofaro D. Echocardiography of left ventricular trabeculations, bands and false tendons. Am J Cardiol 1993; 71: 499500.Google Scholar
Keren A, Billingham ME, Popp RL. Echocardiographic recognition and implications of ventricular hypertrophic trabeculations and aberrant bands. Circulation 1984; 70: 836842.Google Scholar
Deniz M, Kilinc M, Hatipoglu ES. Morphologic study of left ventricular bands. Surg Radiol Anat 2004; 26: 230234.Google Scholar
Kervancioglu M, Ozbag D, Kervancioglu P, et al. Echocardiographic and morphologic examination of left ventricular false tendons in human and animal hearts. Clin Anat 2003; 16: 389395.Google Scholar
Sethuraman KR, Sriram R, Balachandar J. Left ventricular false tendons: echocardiographic incidence in India and clinical importance. Int J Cardiol 1984; 6: 385387.Google Scholar
Brenner JI, Baker K, Ringel RE, Berman MA. Echocardiographic evidence of left ventricular bands in infants and children. J Am Coll Cardiol 1984; 3: 15151520.Google Scholar
Perry LW, Ruckman RN, Shapiro SR, Kuehl KS, Galioto FM, Scott LP. Left ventricular false tendons in children: prevalence as detected by 2-dimensional echocardiography and clinical significance. Am J Cardiol 1983; 52: 12641266.Google Scholar
Tamborini G, Pepi M, Celeste F, et al. Incidence and characteristics of left ventricular false tendons and trabeculations in the normal and pathologic heart by second harmonic echocardiography. J Am Soc Echocardiogr 2004; 17: 367374.Google Scholar
Casta A, Wolf WJ. Left ventricular bands (false tendons): echocardiographic and angiocardiographic delineation in children. Am Heart J 1986; 111: 321324.Google Scholar
Michel RS, Carpenter MA, Lovell MA. Pathological case of the month. Noncompaction of the left ventricular myocardium. Arch Pediatr Adolesc Med 1998; 152: 709710.Google Scholar
Finsterer J, Stöllberger C, Feichtinger H. Non-compaction on echocardiography and autopsy. Acta Cardiol 2003; 58: 165168.Google Scholar
Finsterer J, Stöllberger C, Feichtinger H. Histological appearance of left ventricular hypertrabeculation/noncompaction. Cardiology 2002; 98: 162164.Google Scholar
Junga G, Kneifel S, Von Smekal A, Steinert H, Bauersfeld U. Myocardial ischaemia in children with isolated ventricular non-compaction. Eur Heart J 1999; 20: 910916.Google Scholar
Jenni R, Wyss CA, Oechslin EN, Kaufmann PA. Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction. J Am Coll Cardiol 2002; 39: 450454.Google Scholar
Soler R, Rodriguez E, Monserrat L, Alvarez N. MRI of subendocardial perfusion deficits in isolated left ventricular noncompaction. J Comput Assist Tomogr 2002; 26: 373375.Google Scholar
Nil M, Mori K, Yuasa Y, Ichida F. Isolated noncompaction of myocardium associated with calcification in the interventricular septum. Pediatr Cardiol 2003; 24: 591594.Google Scholar
Icardo JM. Developmental biology of the vertebrate heart. J Exp Zool 1996; 275: 144161.Google Scholar
Sanchez-Quintana D, Garcia-Martinez V, Climent V, Hurle JM. Morphological changes in the normal pattern of ventricular myoarchitecture in the developing human heart. Anat Rec 1995; 243: 483495.Google Scholar
Moore KL (ed.). Cardiovascular system. In: The Developing Human: Clinically Oriented Embryology. WB Saunders Co., Philadelphia, 1982, pp 262276.
Torry TW. Morphogenesis of the Vertebrates. John Wiley & Sons, New York, 1962, pp 407469.
Hyman LH. Comparative Vertebrate Anatomy. University of Chicago Press, Chicago, 1970, p 544.
Van Mierop LHS, Kutsche LM. Comparative anatomy and embryology of the ventricles and arterial pole of the vertebrate heart. In: Nora JJ, Takao A (eds). Congenital Heart Disease. Causes and Processes. Futura Publishing Co., Mt. Kisco, NY, 1984, pp 459474.
Kirby ML. Molecular embryogenesis of the heart. Pediatr Develop Pathol 2002; 5: 516543.Google Scholar
Wessels A, Markwald R. Cardiac morphogenesis and dysmorphogenesis. 1. Normal development. In: Tuan RS, Lo CW (eds). Methods in Molecular Biology, Vol. 136. Developmental Biology Protocols. Humana Press, Totowa, NJ, 2000, pp 239259.
Davis CL. Development of the human heart from its first appearance to the stage found in embryos of twenty paired somites. Carneg Inst Contrib Embryol 1927; 107: 245283.Google Scholar
Gittenberger-de Groot AC. Mannheimer Lecture. The quintessence of the making of the heart. Cardiol Young 2003; 13: 175183.Google Scholar
Manasek FJ. Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J Morphol 1968; 125: 329365.Google Scholar
Manasek FJ. Histogenesis of the embryonic myocardium. Am J Cardiol 1970; 25: 149168.Google Scholar
Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH. Developmental patterning of the myocardium. Anat Rec 2000; 258: 319337.Google Scholar
Sedmera D, Thomas PS. Trabeculation in the embryonic heart. Bioessays 1996; 18: 607.Google Scholar
Sedmera D, Pexieder T, Hu N, Clark EB. Developmental changes in the myocardial architecture of the chick. Anat Rec 1997; 248: 421432.Google Scholar
Icardo JM, Fernandez-Teran A. Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta Anat 1987; 130: 264274.Google Scholar
Icardo JM. Heart anatomy and developmental biology. Experientia 1988; 44: 910919.Google Scholar
Kirby M. Whither complexity in myocardial development? Circ Res 2000; 87: 961963.Google Scholar
Ben-Shachar G, Arcilla RA, Lucas RV, Manasek FJ. Ventricular trabeculations in the chick embryo heart and their contribution to ventricular and muscular septal development. Circ Res 1985; 57: 759766.Google Scholar
Olsen EN, Srivastava D. Molecular pathways controlling heart development. Science 1996; 272: 671676.Google Scholar
Rychter Z, Ostadal B. Fate of “sinusoidal” intertrabecular spaces of the cardiac wall after development of the coronary vascular bed in chick embryo. Folia Morphol 1971; 19: 3144.Google Scholar
Ostadal B. Developmental relationships between the structure, blood supply and metabolic pattern of the vertebrate heart. Cor Vasa 1979; 21: 380386.Google Scholar
Ostadal B, Schiebler TH, Rychter Z. Relations between development of the capillary wall and myoarchitecture of the rat heart. Adv Exp Med Biol 1975; 53: 375388.Google Scholar
Ostadal B, Rychter Z, Poupa O. Comparative aspects of the development of the terminal vascular bed in the myocardium. Physiol Bohemoslov 1970; 19: 17.Google Scholar
Davie PS, Farrell AP. The coronary and luminal circulation of the myocardium of fishes. Can J Zool 1991; 69: 19932001.Google Scholar
Sanchez-Quintana D, Hurle JM. Ventricular myocardial architecture in marine fishes. Anat Rec 1987; 217: 263273.Google Scholar
Agnisola C, Tota B. Structure and function of the fish cardiac ventricle: flexibility and limitations. Cardioscience 1994; 5: 145153.Google Scholar
Breisch EA, White F, Jones HM, Laurs RM. Ultrastructural morphometry of the myocardium of Thunnus alalunga. Cell Tissue Res 1983; 233: 427438.Google Scholar
Tota B. Vascular and metabolic zonation in the ventricular myocar-dium of mammals and fishes. Comp Biochem Physiol A 1983; 76: 423437.Google Scholar
Tota B, Cimini V, Salvatore G, Zummo G. Comparative study of the arterial and lacunary systems of the ventricular myocardium of elasmobranch and teleost fishes. Am J Anat 1983; 167: 1532.Google Scholar
Simoes K, Vicentini CA, Orsi AM, Gregorio EA, Da Cruz C. Morphological studies on the heart ventricle of African catfish (Clarias gariepinus). Anat Histol Embryol 2002; 31: 247251.Google Scholar
Simoes K, Vicentini CA, Orsi AM, Cruz C. Myoarchitecture and vasculature of the heart ventricle in some freshwater teleosts. J Anat 2002; 200: 467475.Google Scholar
Simoes K, Vicentini CA, da Cruz C, Benetti EJ. Structure and vascularization of the ventricular myocardium of Piaractus mesopotamicus and Clarias gariepinus (Teleostei). Anat Histol Embryol 1999; 28: 243246.Google Scholar
De Andres AV, Munoz-Chapull R, Sans-Coma V. Development of the coronary arteries and cardiac veins in the dogfish (Scyliorhinus caniculus). Anat Rec 1993; 235: 436442.Google Scholar
Basile C, Goldspink G, Modigh M, Tota B. Morphological and biochemical characterisation of the inner and outer ventricular myocardial layers of adult tuna fish (Thunnus thynnus L.). Comp Biochem Physiol B 1976; 54: 279283.Google Scholar
Grant RT, Regnier M. The comparative anatomy of the cardiac coronary vessels. Heart 19251926; 12–13: 285310.Google Scholar
O'Brien KM, Xue H, Sidell BD. Quantification of diffusion distance within the spongy myocardium of hearts from antarctic fishes. Respir Physiol 2000; 122: 7180.Google Scholar
O'Brien KM, Sidell BD. The interplay among cardiac ultrastructure, metabolism and the expression of oxygen-binding proteins in Antarctic fishes. J Exp Biol 2000; 203: 12871297.Google Scholar
Santer RM, Greer Walker M. Morphological studies on the ventricle of teleost and elasmobranch hearts. J Zool (Lond) 1980; 190: 259272.Google Scholar
Ruud JT. Vertebrates without erythrocytes and blood pigment. Nature 1954; 173: 848850.Google Scholar
Feller G, Goessens G, Gerday Gh, Bassleer R. Heart structure and ventricular ultrastructure of hemoglobin- and myoglobin-free icefish Channichthys rhinoceratus. Cell Tissue Res 1985; 242: 669676.Google Scholar
Sidell BD. Life at body temperatures below 0 degrees C: the physiology and biochemistry of Antarctic fishes. Gravit Space Biol Bull 2000; 13: 2534.Google Scholar
Greco G, Lipari D, Tota B, Zummo G. Preliminary observations on the heart of the haemoglobinless Antarctic fish Champsocephalus gunnari, Lonnberg. Boll Soc Ital Biol Sper 1981; 57: 18071813.Google Scholar
Zummo G, Acierno R, Agnisola C, Tota B. The heart of the icefish: bioconstruction and adaptation. Braz J Med Biol Res 1995; 28: 12651276.Google Scholar
Acierno R, Agnisola C, Tota B, Sidell BD. Myoglobin enhances cardiac performance in antarctic icefish species that express the protein. Am J Physiol 1997; 273: R100R106.Google Scholar
Tota B, Cerra MC, Mazza R, Pellegrino D, Icardo J. The heart of the Antarctic icefish as paradigm of cold adaptation. J Therm Biol 1997; 22: 409417.Google Scholar
Moylan TJ, Sidell BD. Concentrations of myoglobin and myoglobin mRNA in heart ventricles from Antarctic fishes. J Exp Biol 2000; 203: 12771286.Google Scholar
Di Prisco G, Cocca E, Parker SK, Detrich III HW. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 2002; 295: 185191.Google Scholar
Vayda ME, Small DJ, Yuan ML, Costello L, Sidell BD. Conservation of the myoglobin gene among Antarctic notothenioid fishes. Mol Mar Biol Biotechnol 1997; 6: 207216.Google Scholar
Eastman JT. Antarctic fish biology. Evolution in a unique environment. Academic Press Inc, San Diego, 1993, p 322.
Sedmera D, Pexieder T, Hu N, Clark EB. A quantitative study of the ventricular myoarchitecture in the stage 21–29 chick embryo following decreased loading. Eur J Morphol 1998; 36: 105119.Google Scholar
Sedmera D, Pexieder T, Rychterova V, Hu N, Clark EB. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec 1999; 254: 238252.Google Scholar
Hu N, Sedmera D, Yost HJ, Clark EB. Structure and function of the developing zebrafish heart. Anat Rec 2000; 260: 148157.Google Scholar
King T, Bland Y, Webb S, Barton S, Brown NA. Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev Dyn 2002; 225: 212215.Google Scholar
Sasse-Klaassen S, Probst S, Gerull B, et al. Novel gene locus for autosomal dominant left ventricular noncompaction maps to chromosome 11p15. Circulation 2004; 109: 27202723.Google Scholar
Nugent AW, Daubeney PE, Chondros P, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 2003; 348: 16391646.Google Scholar
Gedeon AK, Wilson MJ, Colley AC, et al. X linked fatal infantile cardiomyopathy maps to Xq28 and is possibly allelic to Barth syndrome. J Med Genet 1995; 32: 383388.Google Scholar
Matsuda M, Tsukahara M, Kondoh O, Mito H. Familial isolated noncompaction of ventricular myocardium. J Hum Genet 1999; 44: 126128.Google Scholar
Bleyl SB, Mumford BR, Brown-Harrison MC, et al. Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet 1997; 72: 257265.Google Scholar
Bione S, D'Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel X-linked gene, G4.5 is responsible for Barth syndrome. Nat Genet 1996; 12: 385389.Google Scholar
Chen R, Tsuji T, Ichida F, et al. Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol Genet Metab 2002; 77: 319325.Google Scholar
Bleyl SB, Mumford BR, Thompson V, et al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet 1997; 61: 868872.Google Scholar
Ichida F, Tsubata S, Bowles KR, et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 2001; 103: 12561263.Google Scholar
Neustein HB, Lurie PR, Dahma B, Takahashi M. An X-linked recessive cardiomyoapthy with abnormal mitochondria. Pediatrics 1979; 64: 2429.Google Scholar
Barth PG, Scholte HR, Berden JA, et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 1983; 62: 327355.Google Scholar
Pauli RM, Scheib-Wixted S, Cripe L, Izumo S, Sekhon GS. Ventricular noncompaction and distal chromosome 5q deletion. Am J Med Genet 1999; 85: 419423.Google Scholar
Vatta M, Mohapatra B, Jimenez S, et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol 2003; 42: 20142027.Google Scholar
Shou W, Aghdasi B, Armstrong DL, et al. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 1998; 391: 489492.Google Scholar
Kenton AB, Sanchez X, Coveler KJ, et al. Isolated left ventricular noncompaction is rarely caused by mutations in G4.5, alpha-dystrobrevin and FK Binding Protein-12. Mol Genet Metab 2004; 82: 162166.Google Scholar
Sasse-Klaassen S, Gerull B, Oechslin E, Jenni R, Thierfelder L. Isolated noncompaction of the left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of patients. Am J Med Genet 2003; 119A: 162167.Google Scholar
Hermida-Prieto M, Monserrat L, Castro-Beiras A, et al. Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol 2004; 94: 5054.Google Scholar
Wong JA, Bofinger MK. Noncompaction of the ventricular myocardium in Melnick–Needles syndrome. Am J Med Genet 1997; 71: 7275.Google Scholar
Mandel K, Grunebaum E, Benson L. Noncompaction of the myocardium associated with Roifman syndrome. Cardiol Young 2001; 11: 240243.Google Scholar
Toriello HV, Carey JC. Corpus callosum agenesis, facial anomalies, Robin sequence, and other anomalies: a new autosomal recessive syndrome? Am J Med Genet 1988; 31: 1723.Google Scholar
Yamatogi Y, Ohtahara S. Early infantile epileptic encephalopathy with suppression-bursts, Ohtahara syndrome; its overview referring to our 16 cases. Brain Dev 2002; 24: 1323.Google Scholar
Ohtahara S, Yamatogi Y. Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol 2003; 20: 398407.Google Scholar
Finsterer J, Stöllberger C, Kopsa W. Noncompaction on cardiac MRI in a patient with Nail–Patella syndrome and mitochondriopathy. Cardiology 2003; 100: 4849.Google Scholar
Happle R, Daniels O, Koopman RJJ. MIDAS syndrome (micropthalmia, dermal aplasia, and sclerocornea): an X-linked phenotype distinct from Goltz syndrome. Am J Med Genet 1993; 47: 710713.Google Scholar
Lacombe D, Creusot G, Battin J. New case of Toriello–Carey syndrome. Am J Med Genet 1992; 42: 374376.Google Scholar
Grant RT. An unusual anomaly of the coronary vessels in the malformed heart of a child. Heart 1926; 13: 273283.Google Scholar
Bellet S, Gouley BA. Congenital heart disease with multiple cardiac anomalies. Report of a case showing aortic atresia, fibrous scar in myocardium and embryonal sinusoidal remains. Am J Med Sci 1932; 183: 458465.Google Scholar
Raghib G, Bloemendaal RD, Kanjuh VI, Edwards JE. Aortic atresia and premature closure of foramen ovale. Myocardial sinusoids and coronary arteriovenous fistula serving as outflow channel. Am Heart J 1965; 70: 476480.Google Scholar
Mocellin R, Sauer U, Simon B, Comazzi M, Sebening F, Buhlmeyer K. Reduced left ventricular size and endocardial fibroelastosis as correlates of mortality in newborns and young infants with severe aortic valve stenosis. Pediatr Cardiol 1983; 4: 265272.Google Scholar
Kim SH, Woo H-O, Kim YM, et al. Abnormal morphological patterns of left ventricular myocardium in the critical stenosis of the aortic valve and the intact ventricular septum. JKMS 1997; 12: 4954.Google Scholar
Freedom RM, Benson L, Wilson GJ. The coronary circulation and myocardium in pulmonary and aortic atresia with an intact ventricular septum. In: Marcelletti C, Anderson RH, Becker AE, Corno A, di Dicarlo D, Mazzera E (eds). Paediatric Cardiology, Vol. 6. Churchill Livingstone, Edinburgh, 1986, pp 7896.
Freedom RM, Culham JAG, Moes CAF. Angiocardiography of Congenital Heart Disease. Macmillan Publishing Co., New York, 1984, pp 358362.
Finegold M, Klein KM. Anastomotic coronary vessels in hypoplasia of the right ventricle. Am Heart J 1971; 82: 678683.Google Scholar
Marin-Garcia J, Roca J, Blieden LC, Lucas Jr RV, Edwards JE. Congenital absence of the pulmonary valve associated with tricuspid atresia and intact ventricular septum. Chest 1973; 64: 658661.Google Scholar
Cox JN, De Seigneux R, Bolens M, Haenni P, Bopp P, Bruins C. Tricuspid atresia, hypoplastic right ventricle, intact ventricular septum and congenital absence of the pulmonary valve. Helv Paediatr Acta 1975; 30: 389398.Google Scholar
Freedom RM, Patel RG, Bloom KR, et al. Congenital absence of the pulmonary valve, associated imperforate membrane type of tricuspid atresia, right ventricular tensor apparatus and intact ventricular septum: a curious developmental complex. Eur J Cardiol 1979; 10: 171196.Google Scholar
Forrest P, Bini RM, Wilkinson JL, et al. Congenital absence of the pulmonic valve and tricuspid atresia with intact ventricular septum. Am J Cardiol 1987; 59: 482484.Google Scholar
O'Connor WN, Cottrill CM, Marion MT, Noonan JA. Defective regional myocardial development and vascularization in one variant of tricuspid atresia – clinical and necropsy findings in three cases. Cardiol Young 1992; 2: 4252.Google Scholar
Mori K, Ando M, Satomi M, Nakazawa M, Momma K, Takao A. Imperforate tricuspid valve with dysplasia of the right ventricular myocardium, pulmonary valve, and coronary artery: a clinicopathologic study of nine cases. Pediatr Cardiol 1992; 13: 2429.Google Scholar
Quero-Jimenez M, Maitre Azcarate MJ, Alvarez Bejarno H, Vasquez Martul E. Tricuspid atresia: an anatomical study of 17 cases. Eur J Cardiol 1975; 3: 337348.Google Scholar
Litovsky S, Choy M, Park J, et al. Absent pulmonary valve with tricuspid atresia or severe tricuspid stenosis: report of three cases and review of the literature. Pediatr Dev Pathol 2000; 3: 353366.Google Scholar
Attenhofer CH, Connolly HM, Warnes CA, et al. Noncompacted myocardium in Ebstein's anomaly: initial description in three patients. J Am Soc Echocardiogr 2004; 17: 677680.Google Scholar
Lamers WH, Viragh S, Wessels A, Moorman AFM, Anderson RH. Formation of the tricuspid valve in the human heart. Circulation 1995; 91: 111121.Google Scholar
Vijayalakshmi IB, Chitra N, Prabhu Deva AN. Use of an Amplatzer duct occluder for closingan aortico-left ventricular tunnel in a case of noncompaction of the left ventricle. Pediatr Cardiol 2004; 25: 7779.Google Scholar
Tavli V, Kayhan B, Okur FF, et al. Noncompaction of the right ventricle following Senning repair. Turk J Pediatr 2001; 43: 261263.Google Scholar
Lemke RP, Giddens NG, Odim JNK. Absent pulmonary valve in tricuspid atresia with left ventricular outflow tract obstruction and patent arterial duct. Cardiol Young 1997; 7: 9497.Google Scholar
Bax JJ, Lamb HJ, Poldermas D, Schalij MJ, de Roos A, van der Wall EE. Non-compaction cardiomyopathy–echocardiographic diagnosis. Eur J Echocardiogr 2002; 3: 301302.Google Scholar
Bax JJ, Atsma DE, Lamb HJ, et al. Noninvasive and invasive evaluation of noncompaction cardiomyopathy. J Cardiovasc Magn Reson 2002; 4: 353357.Google Scholar
Williams RI, Masani ND, Buchalter MB, Fraser AG. Abnormal myocardial strain rate in noncompaction of the left ventricle. J Am Soc Echocardiogr 2003; 16: 293296.Google Scholar
Borow KM, Lang RM, Neumann A, Carroll JD, Rajfer SI. Physiologic mechanisms governing hemodynamic responses to positive inotropic therapy in patients with dilated cardiomyopathy. Circulation 1988; 77: 625637.Google Scholar
Sengupta PP, Mohan JC, Mehta V, et al. Comparison of echocardiographic features of noncompaction of the left ventricle in adults versus idiopathic dilated cardiomyopathy in adults. Am J Cardiol 2004; 94: 389391.Google Scholar
Moon JC, Fisher NG, McKenna WJ, Pennell DJ. Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart 2004; 90: 645649.Google Scholar
Chung T, Yiannikas J, Lee LC, et al. Isolated noncompaction involving the left ventricular apex in adults. Am J Cardiol 2004; 94: 12141216.Google Scholar
Corrado G, Santarone M, Miglierina E, et al. Isolated noncompaction of the ventricular myocardium: a study in an adult male and literature review. Ital Heart J 2000; 1: 372375.Google Scholar
Koo BK, Choi D, Ha JW, et al. Isolated noncompaction of the ventricular myocardium: contrast echocardiographic findings and review of the literature. Echocardiography 2002; 19: 153156.Google Scholar
Korcyk D, Edwards CC, Armstrong G, et al. Cardiac-enhanced cardiac magnetic resonance in a patient with familial isolated ventricular non-compaction. J Cardiovasc Magn Reson 2004; 6: 569576.Google Scholar
Weiss F, Habermann CR, Lilje C, et al. MRI in the diagnosis of non-compacted ventricular myocardium (NCVM) compared to echocardiography. Rofo 2003; 175: 12141219.Google Scholar
Hamamichi Y, Ichida F, Hashimoto I, et al. Isolated noncompaction of the ventricular myocardium: ultrafast computed tomography and magnetic resonance imaging. Int J Card Imaging 2001; 17: 305314.Google Scholar
Gebker R, Paetsch I, Wahl A, Meyer R, Nagel E. Ventricular non-compaction. Eur Heart J 2004; 25: Cover Image.Google Scholar
Barkhausen J, Hunold P, Eggebrecht H, et al. Detection and characterization of intracardiac thrombi on MR imaging. Am J Roentgenol 2002; 179: 15391544.Google Scholar
Petersen SE, Timperley J, Neubauer S. Left ventricular thrombi in a patient with left ventricular non-compaction – visualisation of the rationale for anticoagulation. Heart 2005; 91: e4Google Scholar
Rigopoulos A, Rizos IK, Aggeli C, et al. Isolated left ventricular noncompaction: an unclassified cardiomyopathy with severe prognosis in adults. Cardiology 2002; 98: 2532.Google Scholar
Ali SK, Omran AS, Najm H, Godman MJ. Noncompaction of the ventricular myocardium associated with mitral regurgitation and preserved ventricular systolic function. J Am Soc Echocardiogr 2004; 17: 8790.Google Scholar
Duru F, Candinas R. Noncompaction of ventricular myocardium and arrhythmias. J Cardiovasc Electrophysiol 2000; 11: 493.Google Scholar
Nihei K, Shinomiya N, Kabayama H, et al. Wolff–Parkinson–White (WPW) syndrome in isolated noncompaction of the ventricular myocardium (INVM). Circ J 2004; 68: 8284.Google Scholar
Yasukawa K, Terai M, Honda A, Kohno Y. Isolated noncompaction of ventricular myocardium associated with fatal ventricular fibrillation. Pediatr Cardiol 2001; 22: 512514.Google Scholar
Celiker A, Kafali G, Dogan R. Cardioverter defibrillator implantation in a child with isolated noncompaction of the ventricular myocardium and ventricular fibrillation. Pacing Clin Electrophysiol 2004; 27: 104108.Google Scholar
Seres L, Lopez J, Larrousse E, Moya A, Pereferrer D, Valle V. Isolated noncompaction left ventricular myocardium and polymorphic ventricular tachycardia. Clin Cardiol 2003; 26: 4648.Google Scholar
Valdes-Dapena M, Gilbert-Barness E. Cardiovascular causes for sudden infant death. Pediatr Pathol Mol Med 2002; 21: 195211.Google Scholar
Ferrans VJ, McAllister HA, Haese WH. Infantile cardiomyopathy with histiocytoid change in cardiac muscle cells. Report of six patients. Circulation 1976; 53: 708719.Google Scholar
Finsterer J, Stöllberger C, Blazek G, Spahits E. Cardiac involvement in myotonic dystrophy, Becker muscular dystrophy and mitochondrial myopathy: a five-year follow-up. Can J Cardiol 2001; 17: 10611069.Google Scholar
Stöllberger C, Winkler-Dworak M, Blazek G, Finsterer J. Left ventricular hypertrabeculation/noncompaction with and without neuromuscular disorders. Int J Cardiol 2004; 97: 8992.Google Scholar
Finsterer J, Stöllberger C, Prainer C, Hochwarter A. Lone noncompaction in Leber's hereditary optic neuropathy. Acta Cardiol 2004; 59: 187190.Google Scholar
Stöllberger C, Finsterer J, Blazek G. Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders. Am J Cardiol 2002; 90: 899902.Google Scholar
Stöllberger C, Finsterer J, Blazek G. Isolated left ventricular abnormal trabeculation: follow-up and association with neuromuscular disorders. Can J Cardiol 2001; 17: 163168.Google Scholar
Charniot JC, Pascal C, Bouchier C, et al. Functional consequences of an LMNA mutation associated with a new cardiac and non-cardiac phenotype. Hum Mutat 2003; 21: 473481.Google Scholar
Raharjo WH, Enarson P, Sullivan T, Stewart CL, Burke B. Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J Cell Sci 2001; 114: 44474457.Google Scholar
Zhou Q, Chu PH, Huang C, et al. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J Cell Biol 2001; 155: 605612.Google Scholar
Hosaki J. The heart disease screening system for school children in Japan and its results. Acta Paediatr Jpn 1985; 27: 360365.Google Scholar
Ino T, Yabuta K, Yamauchi K. Heart disease screening in Japanese children. BMJ 1993; 306: 1128.Google Scholar
Wald RM, Veldtman GR, Golding F, Kirsh J, McCrindle BW, Benson LN. Determinants of outcome in isolated ventricular noncompaction in childhood. Am J Cardiol 2005; In press.Google Scholar
Stöllberger C, Preiser J, Finsterer J. Histological detection of intramyocardial abscesses in Candida sepsis mimicking left ventricular noncompaction/hypertrabeculation on echocardiography. Mycoses 2004; 47: 7275.Google Scholar
Stöllberger C, Preiser J, Finsterer J. Candida sepsis with intramyocardial abscesses mimicking left ventricular noncompaction. Eur J Echocardiogr 2004; 5: 7678.Google Scholar
Stöllberger C, Finsterer J, Waldenberger FR, Hainfellner JA, Ullrich R. Intramyocardial hematoma mimicking abnormal left ventricular trabeculation. J Am Soc Echocardiogr 2001; 14: 10301032.Google Scholar
Stöllberger C, Finsterer J, Voigtlander T, Slany J. Is left ventricular hypertrabeculation/noncompaction a cardiac manifestation of Fabry's disease? Z Kardiol 2003; 92: 966969.Google Scholar
Tsui KL, Chan KK, Leung TC, Lam KH, Li SK. Isolated ventricular non-compaction presenting with ventricular tachycardia. Hong Kong Med J 2003; 9: 137140.Google Scholar
Elshershari H, Okutan V, Celiker A. Isolated noncompaction of ventricular myocardium. Cardiol Young 2001; 11: 472475.Google Scholar
Toyono M, Kondo C, Nakajima Y, Nakazawa M, Momma K, Kusakabe K. Effects of carvedilol on left ventricular function, mass, and scintigraphic findings in isolated left ventricular non-compaction. Heart 2001; 86: e4.Google Scholar
Stamou SC, Lefrak EA, Athari FC, Burton NA, Massimiano PS. Heart transplantation in a patient with isolated noncompaction of the left ventricular myocardium. Ann Thorac Surg 2004; 77: 18061808.Google Scholar
Stöllberger C, Finsterer J. Thrombi in left ventricular hypertrabeculation/noncompaction: review of the literature. Acta Cardiol 2004; 59: 341344.Google Scholar
Murphy RT, Thaman R, Gimeno Blanes J, et al. Natural history and familial characteristics of isolated left ventricular non-compaction. Eur Heart J 2005; 24: 187192.Google Scholar