Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:23:31.623Z Has data issue: false hasContentIssue false

Butler Modules Over Valuation Domains

Published online by Cambridge University Press:  20 November 2018

L. Fuchs
Affiliation:
Department of Mathematics, Tulane University, New Orleans, Louisiana 70118 U S. A.
E. Monari-Martinez
Affiliation:
Department of Mathematics, Tulane University, New Orleans, Louisiana 70118 U S. A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a commutative domain with 1, Q its field of quotients, and M a torsion-free R module. By a balanced submodule of M is meant an RD-submodule N [i.e. rN = NrM for each rR] such that, for every R-submodule J of Q, every homomorphism η : JM/N can be lifted to a homomorphism χ:J → M. This definition extends the notion of balancedness as introduced in abelian groups (see e.g. [10, p. 113]). The balanced-projective R-modules can be characterized as summands of completely decomposable R-modules (i.e. summands of direct sums of submodules of Q). If R is a valuation domain, then such summands are again completely decomposable; see [12, p. 275].

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1991

References

1. Albrecht, U. and Hill, P., Butler groups of infinite rank and Axiom 3, Czech. Math. J. 37 (1987) 293309.Google Scholar
2. Arnold, D.M., Finite rank torsion-free Abelian groups and rings, Lecture Notes in Math. 931 (Spinger, 1982).Google Scholar
3. Becker, T., Fuchs, L. and Shelah, S., Whitehead modules over domains, Forum Math. 1 (1989) 5368.Google Scholar
4. Bican, L. and Salce, L., Butler groups of infinite rank, Abelian group theory, Lecture Notes in Math. 1006 (Spinger, 1983) 171189.Google Scholar
5. Dugas, M., On some subgroups of infinite rank Butler groups, Rend. Sem. Mat. Univ. Padova 79 (1988) 153161.Google Scholar
6. Dugas, M., Hill, P. and Rangaswamy, K.M., Butler groups of infinte rank II, Trans. Amer. Math. Soc. 320 1990,643664.Google Scholar
7. Dugas, M. and Rangaswamy, K.M., Infinite rank Butler groups, Trans. Amer. Math. Soc. 305 (1988) 129— 142.Google Scholar
8. Eklof, P.C. and Fuchs, L., Baer modules over valuation domains, Annali di Mat. Pura ed Appl. 150 (1988) 363373.Google Scholar
9. Eklof, P.C., Fuchs, L. and Shelah, S., Baer modules over domains, Trans. Amer. Math. Soc. 322(1990), 547560.Google Scholar
10. Fuchs, L., Infinite Abelian groups, 2 (Academic Press, 1973).Google Scholar
11. Fuchs, L., On polyserial modules over valuation domains, Periodica Math. Hung. 18 (1987) 271277.Google Scholar
12. Fuchs, L. and Salce, L., Modules over valuation domains, Lecture Notes in Pure Appl. Math. 97 (Marcel Dekker, 1985).Google Scholar
13. Fuchs, L. and Salce, L., Polyserial modules over valuation domains, Rend. Sem. Mat. Univ. Padova 81(1989)243264.Google Scholar