Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T06:07:59.618Z Has data issue: false hasContentIssue false

Neuroimaging of phonetic perception in bilinguals*

Published online by Cambridge University Press:  06 October 2015

NARLY GOLESTANI*
Affiliation:
University of Geneva
*
Address for correspondence: Brain and Language Lab, Department of Clinical Neuroscience, Campus Biotech, 9 Chemin des Mines, 1202 Genève, Switzerland. [email protected]

Abstract

This review addresses the cortical basis of phonetic processing in bilinguals and of phonetic learning, with a focus on functional magnetic resonance imaging studies of phonetic perception. Although results vary across studies depending on stimulus characteristics, task demands, and participants’ previous experience with the non-native/second-language sounds, taken together, the literature reveals involvement of overlapping brain regions during phonetic processing in the first and second language of bilinguals, with special involvement of regions of the dorsal audio-motor interface including frontal and posterior cortices during the processing of new, or ‘difficult’ speech sounds. These findings converge with the brain imaging literature on language processing in bilinguals more generally, during semantic and syntactic processing of words and of connected speech. More brain imaging work can serve to better elucidate the precise mechanisms underlying phonetic encoding and its interaction with articulatory processes, in particular where multiple phonetic repertoires have been or are being acquired.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was supported by the Swiss National Science Foundation (PP00P3_133701). I would like to thank Christophe Pallier and an anonymous reviewer, who provided helpful comments on this review.

References

Aboitiz, F. (2012). Gestures, vocalizations, and memory in language origins. Frontiers in Evolutionary Neuroscience, 4, 2.CrossRefGoogle ScholarPubMed
Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica (Amst), 128, 466–78.Google Scholar
Abutalebi, J., Cappa, S. F., & Perani, D. (2001). The bilingual brain as revealed by functional neuroimaging. Bilingualism: Language and Cognition, 4, 179190.CrossRefGoogle Scholar
Agnew, Z. K., McGettigan, C., Banks, B., & Scott, S. K. (2013). Articulatory movements modulate auditory responses to speech. Neuroimage, 73, 191–9.Google Scholar
Alain, C., Reinke, K., McDonald, K. L., Chau, W., Tam, F., Pacurar, A., & Graham, S. (2005). Left thalamo-cortical network implicated in successful speech separation and identification. Neuroimage, 26, 592599.Google Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S. F., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10, 512528.Google Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Rao, S. M., & Cox, R. W. (1996). Function of the left planum temporale in auditory and linguistic processing. Brain, 119, 12391247.Google Scholar
Binder, J. R., Rao, S. M., Hammeke, T. A., Yetkin, F. Z., Jesmanowicz, A., Bandettini, P. A., Wong, E. C., Estkowski, L. D., Goldstein, M. D., Haughton, V. M., & Hyde, J.S (1994). Functional magnetic resonance imaging of human auditory cortex. Annals of Neurology, 35, 662–72.Google Scholar
Bosch, L., Costa, A., & Sebastián-Gallés, N. (2000). First and second language vowel perception in early bilinguals. European Journal of Cognitive Psychology, 12, 189221.Google Scholar
Brandmeyer, A., Farquhar, J. D. R., McQueen, J. M., & Desain, P. W. M. (2013). Decoding Speech Perception by Native and Non-Native Speakers Using Single-Trial Electrophysiological Data. PLoS One, 8:e68261.Google Scholar
Buchsbaum, B. R., Hickok, G., & Humphries, C. (2001). Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cognitive Science, 25, 663678.Google Scholar
Burgaleta, M., Baus, C., Díaz, B., & Sebastián-Gallés, N. (2014). Brain structure is related to speech perception abilities in bilinguals. Brain Structure & Function, 219, 14051416.Google Scholar
Burton, M. W., Small, S. L., & Blumstein, S. E. (2000). The role of segmentation in phonological processing: an fMRI investigation. Journal of Cognitive Neuroscience, 12, 679–90.Google Scholar
Callan, D. E., Jones, J. A., Callan, A. M., & Akahane-Yamada, R. (2004). Phonetic perceptual identification by native- and second-language speakers differentially activates brain regions involved with acoustic phonetic processing and those involved with articulatory-auditory/orosensory internal models. Neuroimage, 22, 11821194.Google Scholar
Callan, D. E., Tajima, K., Callan, A. M., Kubo, R., Masaki, S., & Akahane-Yamada, R. (2003). Learning-induced neural plasticity associated with improved identification performance after training of a difficult second-language phonetic contrast. Neuroimage, 19, 113124.CrossRefGoogle ScholarPubMed
Chandrasekaran, B., Kraus, N., & Wong, P. C. M. (2012). Human inferior colliculus activity relates to individual differences in spoken language learning. Journal of Neurophysiology, 107, 13251336.CrossRefGoogle ScholarPubMed
Chang, C. B. (2012). Rapid and multifaceted effects of second-language learning on first-language speech production. Journal of Phonetics, 40, 249268.CrossRefGoogle Scholar
Chang, E. F., Rieger, J. W., Johnson, K., Berger, M. S., Barbaro, N. M., & Knight, R. T. (2010). Categorical speech representation in human superior temporal gyrus. Nature Neuroscience, 13, 1428U169.Google Scholar
Chee, M. W. L., Hon, N., Lee, H. L., & Soon, C. S. (2001). Relative language proficiency modulates BOLD signal change when bilinguals perform semantic judgments. Neuroimage, 13, 11551163.Google Scholar
Cheour, M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., & Naatanen, R. (1998). Development of language-specific phoneme representations in the infant brain. Nature Neuroscience, 1, 351353.CrossRefGoogle ScholarPubMed
Conant, L. L., Liebenthal, E., Desai, A., & Binder, J. R. (2014). FMRI of phonemic perception and its relationship to reading development in elementary- to middle-school-age children. Neuroimage, 89, 192202.Google Scholar
Dapretto, M., & Bookheimer, S. Y. (1999). Form and content: Dissociating syntax and semantics in sentence comprehension. Neuron, 24, 427432.Google Scholar
Dehaene-Lambertz, G., Dupoux, E., & Gout, A. (2000). Electrophysiological correlates of phonological processing: a cross-linguistic study. Journal of Cognitive Neuroscience, 12, 635–47.Google Scholar
Démonet, J. F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J. L., Wise, R., Rascol, A., & Frackowiak, R. (1992). The anatomy of phonological and semantic processing in normal subjects. Brain, 115, 1753–68.Google Scholar
Díaz, B., Baus, C., Escera, C., Costa, A., & Sebastián-Gallés, N. (2008). Brain potentials to native phoneme discrimination reveal the origin of individual differences in learning the sounds of a second language. Proceedings of the National Academy of Sciences of the United States of America, 105, 1608316088.Google Scholar
Doelling, K. B., Arnal, L. H., Ghitza, O., & Poeppel, D. (2014). Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing. Neuroimage, 85, 761768.Google Scholar
Edwards, E., & Chang, E. F. (2013). Syllabic (approximately 2–5 Hz) and fluctuation (approximately 1–10 Hz) ranges in speech and auditory processing. Hearing Research, 305, 113–34.Google Scholar
Fava, E., Hull, R., & Bortfeld, H. (2014). Dissociating Cortical Activity during Processing of Native and Non-Native Audiovisual Speech from Early to Late Infancy. Brain Sciences, 4, 471–87.CrossRefGoogle ScholarPubMed
Fiez, J. A., Raichle, M. E., Miezin, F. M., Petersen, S. E., Tallal, P., & Katz, W. F. (1995). PET Studies of Auditory and Phonological Processing: Effects of Stimulus Characteristics and Task Demands. Journal of Cognitive Neuroscience, 7, 357–75.Google Scholar
Flege, J. E., Munro, M. J., & MacKay, I. R. (1995). Factors affecting strength of perceived foreign accent in a second language. The Journal of the Acoustical Society of America, 97, 3125–34.Google Scholar
Frith, C. D., Friston, K. J., Liddle, P. F., & Frackowiak, R. S. J. (1991). A PET study of word finding. Neuropsychologia, 29, 11371148.Google Scholar
Giraud, A. L., Lorenzi, C., Ashburner, J., Wable, J., Johnsrude, I., Frackowiak, R., & Kleinschmidt, A. (2000). Representation of the temporal envelope of sounds in the human brain. Journal of Neurophysiology, 84, 15881598.Google Scholar
Golestani, N. (2014). Brain structural correlates of individual differences at low-to high-levels of the language processing hierarchy: A review of new approaches to imaging research. International Journal of Bilingualism, 18, 634.Google Scholar
Golestani, N., Alario, F. X., Meriaux, S., Le Bihan, D., Dehaene, S., & Pallier, C. (2006). Syntax production in bilinguals. Neuropsychologia, 44, 1029–40.Google Scholar
Golestani, N., Molko, N., Dehaene, S., Le Bihan, D., & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17, 575–82.Google Scholar
Golestani, N., & Pallier, C. (2007). Anatomical correlates of foreign speech sound production. Cerebral Cortex, 17, 929–34.Google Scholar
Golestani, N., Paus, T., & Zatorre, R. J. (2002). Anatomical correlates of learning novel speech sounds. Neuron, 35, 9971010.Google Scholar
Golestani, N., Price, C. J., & Scott, S. K. (2011). Born with an Ear for Dialects? Structural Plasticity in the Expert Phonetician Brain. Journal of Neuroscience, 31, 42134220.Google Scholar
Golestani, N., & Zatorre, R. J. (2004). Learning new sounds of speech: reallocation of neural substrates. Neuroimage, 21, 494506.Google Scholar
Golestani, N., & Zatorre, R. J. (2009). Individual differences in the acquisition of second language phonology. Brain and Language, 109, 5567.Google Scholar
Grill-Spector, K., & Malach, R. (2001). fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107, 293321.Google Scholar
Hashizume, H., Taki, Y., Sassa, Y., Thyreau, B., Asano, M., Asano, K., Takeuchi, H., Nouchi, R., Kotozaki, Y., Jeong, H., Sugiura, M., & Kawashima, R. (2014). Developmental changes in brain activation involved in the production of novel speech sounds in children. Human Brain Mapping, 35, 4079–89.Google Scholar
Hattori, K., & Iverson, P. (2009). English vertical bar r vertical bar-vertical bar l vertical bar category assimilation by Japanese adults: Individual differences and the link to identification accuracy. Journal of the Acoustical Society of America, 125, 469479.Google Scholar
Heim, S., Opitz, B., Muller, K., & Friederici, A. D. (2003). Phonological processing during language production: fMRI evidence for a shared production-comprehension network. Cognitive Brain Research, 16, 285296.CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4, 131138.Google Scholar
Hickok, G., & Poeppel, D. (2007). Opinion - The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393402.CrossRefGoogle Scholar
Indefrey, P. (2006). A meta-analysis of hemodynamic studies on first and second language processing: Which suggested differences can we trust and what do they mean? Language Learning, 56, 279304.Google Scholar
Jacquemot, C., Pallier, C., Le Bihan, D., Dehaene, S., & Dupoux, E. (2003). Phonological grammar shapes the auditory cortex: A functional magnetic resonance imaging study. Journal of Neuroscience, 23, 95419546.Google Scholar
Jancke, L., Shah, N. J., Posse, S., Grosse-Ryuken, M., & Muller-Gartner, H. W. (1998). Intensity coding of auditory stimuli: an fMRI study. Neuropsychologia, 36, 875883.Google Scholar
Kaan, E., Wayland, R., & Keil, A. (2013). Changes in oscillatory brain networks after lexical tone training. Brain Sciences, 3, 757–80.Google Scholar
Kartushina, N., & Frauenfelder, U. H. (2014). On the effects of L2 perception and of individual differences in L1 production on L2 pronunciation. Frontiers in Psychology, 5. http://doi.org/10.3389/fpsyg.2014.01246 Google Scholar
Kartushina, N., Hervais-Adelman, A., Frauenfelder, U., & Golestani, N. (2015). The effect of production training with visual feedback on the perception and production of foreign speech sounds. Journal of the Acoustical Society of America, 138, 817832.Google Scholar
Kartushina, N., Hervais-Adelman, A., Frauenfelder, U., & Golestani, N. (unpublished manuscript). Mutual influences between native and non-native vowels in production: evidence from short-term articulatory feedback training. Journal of Phonetics.Google Scholar
Kilian-Huetten, N., Valente, G., Vroomen, J., & Formisano, E. (2011). Auditory Cortex Encodes the Perceptual Interpretation of Ambiguous Sound. Journal of Neuroscience, 31, 17151720.CrossRefGoogle Scholar
Klein, D., Milner, B., Zatorre, R. J., Meyer, E., & Evans, A. C. (1995). The neural substrates underlying word generation - a bilingual functional-imaging study. Proceedings of the National Academy of Sciences of the United States of America, 92, 2899–2903.Google Scholar
Klein, D., Mok, K., Chen, J. K., & Watkins, K. E. (2014). Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals. Brain and Language, 131, 20–4.Google Scholar
Koelsch, S., Schulze, K., Sammler, D., Fritz, T., Mueller, K., & Gruber, O. (2009). Functional Architecture of Verbal and Tonal Working Memory: An fMRI Study. Human Brain Mapping, 30, 859873.Google Scholar
Kumar, A. U., Hegde, M., & Mayaleela, (2010). Perceptual learning of non-native speech contrast and functioning of the olivocochlear bundle. International Journal of Audiology, 49, 488496.Google Scholar
Lebel, C., & Beaulieu, C. (2009). Lateralization of the Arcuate Fasciculus from Childhood to Adulthood and its Relation to Cognitive Abilities in Children. Human Brain Mapping, 30, 35633573.Google Scholar
Lee, Y.-S., Turkeltaub, P., Granger, R., & Raizada, R. D. S. (2012). Categorical Speech Processing in Broca's Area: An fMRI Study Using Multivariate Pattern-Based Analysis. Journal of Neuroscience, 32, 39423948.Google Scholar
Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21, 136.Google Scholar
Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T., & Medler, D. A. (2005). Neural substrates of phonemic perception. Cerebral Cortex, 15, 16211631.Google Scholar
Liebenthal, E., Desai, R., Ellingson, M. M., Ramachandran, B., Desai, A., & Binder, J. R. (2010). Specialization along the Left Superior Temporal Sulcus for Auditory Categorization. Cerebral Cortex, 20, 29582970.Google Scholar
MacKain, K. S., Best, C. T., & Strange, W. (1981). Categorical perception of English /r/ and /l/ by Japanese bilinguals. Applied Psycholinguistics, 2, 369390.Google Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O’Doherty, J., Ashburner, J., Frackowiak, R. S., & Price, C. J. (2004). Neurolinguistics: structural plasticity in the bilingual brain. Nature, 431 (7010), 757.Google Scholar
Meister, I. G., Wilson, S. M., Deblieck, C., Wu, A. D., & Iacoboni, M. (2007). The essential role of premotor cortex in speech perception. Current Biology : CB, 17, 1692–6.Google Scholar
Mesgarani, N., Cheung, C., Johnson, K., & Chang, E. F. (2014). Phonetic Feature Encoding in Human Superior Temporal Gyrus. Science, 343, 10061010.Google Scholar
Minagawa-Kawai, Y., Cristia, A., Long, B., Vendelin, I., Hakuno, Y., Dutat, M., Filippin, L., Cabrol, D., & Dupoux, E. (2013). Insights on NIRS Sensitivity from a Cross-Linguistic Study on the Emergence of Phonological Grammar. Frontiers in Psychology, 4, 170.Google Scholar
Minagawa-Kawai, Y., Mori, K., Naoi, N., & Kojima, S. (2007). Neural attunement processes in infants during the acquisition of a language-specific phonemic contrast. Journal of Neuroscience, 27, 315321.Google Scholar
Morillon, B., Liegeois-Chauvel, C., Amer, L. H., Bener, C.-G., & Giraud, A.-L. (2012). Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study. Frontiers in Psychology, 3.Google Scholar
Myers, E. B., & Swan, K. (2012). Effects of Category Learning on Neural Sensitivity to Non-native Phonetic Categories. Journal of Cognitive Neuroscience, 24, 16951708.Google Scholar
Nixon, P., Lazarova, J., Hodinott-Hill, I., Gough, P., & Passingham, R. (2004). The inferior frontal gyrus and phonological processing: An investigation using rTMS. Journal of Cognitive Neuroscience, 16, 289300.Google Scholar
Obleser, J., Eisner, F., & Kotz, S. A. (2008). Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. Journal of Neuroscience, 28, 8116–23.Google Scholar
Obleser, J., Leaver, A. M., Vanmeter, J., & Rauschecker, J. P. (2010). Segregation of vowels and consonants in human auditory cortex: evidence for distributed hierarchical organization. Frontiers in Psychology, 1, 232.Google Scholar
Ortiz-Mantilla, S., Hamalainen, J. A., Musacchia, G., & Benasich, A. A. (2013). Enhancement of Gamma Oscillations Indicates Preferential Processing of Native over Foreign Phonemic Contrasts in Infants. Journal of Neuroscience, 33, 1874618754.Google Scholar
Pallier, C., Bosch, L., & Sebastián-Gallés, N. (1997). A limit on behavioral plasticity in speech perception. Cognition, 64, B9B17.Google Scholar
Paulesu, E., Frith, C. D., & Frackowiak, R. S. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342–5.Google Scholar
Paus, T., Perry, D. W., Zatorre, R. J., Worsley, K. J., & Evans, A. C. (1996). Modulation of cerebral blood flow in the human auditory cortex during speech: role of motor-to-sensory discharges. The European Journal of Neuroscience, 8, 2236–46.Google Scholar
Peelle, J. E. (2012). The hemispheric lateralization of speech processing depends on what “speech” is: a hierarchical perspective. Frontiers in Human Neuroscience, 6.Google Scholar
Petitto, L. A., Berens, M. S., Kovelman, I., Dubins, M. H., Jasinska, K., & Shalinsky, M. (2012). The “Perceptual Wedge Hypothesis” as the basis for bilingual babies’ phonetic processing advantage: New insights from fNIRS brain imaging. Brain and Language, 121, 130143.Google Scholar
Pierce, L. J., Klein, D., Chen, J. K., Delcenserie, A., & Genesee, F. (2014). Mapping the unconscious maintenance of a lost first language. Proceedings of the National Academy of Scieinces of the United States of America, 111, 17314–9.Google Scholar
Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10, 1535.Google Scholar
Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62, 816–47.Google Scholar
Price, C. J., Crinion, J. T., & Macsweeney, M. (2011). A Generative Model of Speech Production in Broca's and Wernicke's Areas. Frontiers in Psychology, 2, 237.Google Scholar
Pulvermuller, F., Huss, M., Kherif, F., Martin, F., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences of the United States of America, 103, 78657870.Google Scholar
Raizada, R. D. S., & Poldrack, R. A. (2007). Selective amplification of stimulus differences during categorical processing of speech. Neuron, 56, 726740.Google Scholar
Raizada, R. D. S., Tsao, F. M., Liu, H. M., & Kuhl, P. K. (2010). Quantifying the Adequacy of Neural Representations for a Cross-Language Phonetic Discrimination Task: Prediction of Individual Differences. Cerebral Cortex, 20, 112.Google Scholar
Reiterer, S. M., Hu, X., Erb, M., Rota, G., Nardo, D., Grodd, W., Winkler, S., & Ackermann, H. (2011). Individual differences in audio-vocal speech imitation aptitude in late bilinguals: functional neuro-imaging and brain morphology. Frontiers in Psychology, 2, 271.Google Scholar
Ressel, V., Pallier, C., Ventura-Campos, N., Díaz, B., Roessler, A., Avila, C., & Sebastián-Gallés, N. (2012). An Effect of Bilingualism on the Auditory Cortex. Journal of Neuroscience, 32, 1659716601.Google Scholar
Rivera-Gaxiola, M., Silva-Pereyra, J., & Kuhl, P. K. (2005). Brain potentials to native and non-native speech contrasts in 7-and 11-month-old American infants. Developmental Science, 8, 162172.Google Scholar
Rodriguez-Fornells, A., Cunillera, T., Mestres-Misse, A., & de Diego-Balaguer, R. (2009). Neurophysiological mechanisms involved in language learning in adults. Philosophical Transactions of the Royal Society B-Biological Sciences, 364, 37113735.Google Scholar
Rogers, J. C., Mottonen, R., Boyles, R., & Watkins, K. E. (2014). Discrimination of speech and non-speech sounds following theta-burst stimulation of the motor cortex. Frontiers in Psychology, 5, 754.Google Scholar
Santoro, R., Moerel, M., De Martino, F., Goebel, R., Ugurbil, K., Yacoub, E., & Formisano, E. (2014). Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex. PLoS Computational Biology, 10, e1003412.Google Scholar
Scott, S. K., & Johnsrude, I. S. (2003). The neuroanatomical and functional organization of speech perception. Trends in Neurosciences, 26, 100107.Google Scholar
Sebastián-Gallés, N., Rodriguez-Fornells, A., de Diego-Balaguer, R., & Díaz, B. (2006). First- and second-language phonological representations in the mental lexicon. Journal of Cognitive Neuroscience, 18, 12771291.Google Scholar
Sebastián-Gallés, N., Soriano-Mas, C., Baus, C., Díaz, B., Ressel, V., Pallier, C., Costa, A., & Pujol, J. (2012). Neuroanatomical markers of individual differences in native and non-native vowel perception. Journal of Neurolinguistics, 25, 150162.Google Scholar
Sebastian, R., Laird, A. R., & Kiran, S. (2011). Meta-analysis of the neural representation of first language and second language. Applied Psycholinguistics, 32, 799819.Google Scholar
Skoe, E., Chandrasekaran, B., Spitzer, E. R., Wong, P. C. M., & Kraus, N. (2014). Human brainstem plasticity: The interaction of stimulus probability and auditory learning. Neurobiology of Learning and Memory, 109, 8293.Google Scholar
Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 95, 876882.Google Scholar
Stowe, L. A., & Sabourin, L. (2005). Imaging the processing of a second language: Effects of maturation and proficiency on the neural processes involved. International Review of Applied Linguistics in Language Teaching, 43, 329353.Google Scholar
Wessinger, C. M., VanMeter, J., Tian, B., Van Lare, J., Pekar, J., & Rauschecker, J. P. (2001). Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 13, 17.Google Scholar
Wong, F. C. K., Chandrasekaran, B., Garibaldi, K., & Wong, P. C. M. (2011). White Matter Anisotropy in the Ventral Language Pathway Predicts Sound-to-Word Learning Success. Journal of Neuroscience, 31, 87808785.Google Scholar
Wong, P. C. M., Perrachione, T. K., & Parrish, T. B. (2007). Neural characteristics of successful and less successful speech and word learning in adults. Human Brain Mapping, 28, 9951006.Google Scholar
Wong, P. C. M., Warrier, C. M., Penhune, V. B., Roy, A. K., Sadehh, A., Parrish, T. B., & Zatorre, R. J. (2008). Volume of left heschl's gyrus and linguistic pitch learning. Cerebral Cortex, 18, 828836.Google Scholar
Xi, J., Zhang, L., Shu, H., Zhang, Y., & Li, P. (2010). Categorical perception of lexical tones in Chinese revealed by mismatch negativity. Neuroscience, 170, 223–31.Google Scholar
Zatorre, R. J., Evans, A. C., Meyer, E., & Gjedde, A. (1992). Lateralization of phonetic and pitch discrimination in speech processing. Science, 256, 846–9.Google Scholar
Zhang, L., Xi, J., Xu, G., Shu, H., Wang, X., & Li, P. (2011). Cortical Dynamics of Acoustic and Phonological Processing in Speech Perception. PLoS One, 6.Google ScholarPubMed
Zhang, Y., Kuhl, P. K., Imada, T., Iverson, P., Pruitt, J., Stevens, E. B., Kawakatsu, M., Tohkura, Y., & Nemoto, I. (2009). Neural signatures of phonetic learning in adulthood: A magnetoencephalography study. Neuroimage, 46, 226240.Google Scholar
Zhang, Y., Kuhl, P. K., Imada, T., Kotani, M., & Tohkura, Y. (2005). Effects of language experience: Neural commitment to language-specific auditory patterns. Neuroimage, 26, 703720.Google Scholar
Zinszer, B. D., Chen, P., Wu, H., Shu, H., & Li, P. (2015). Second language experience modulates neural specialization for first language lexical tones. Journal of Neurolinguistics, 33, 5066.Google Scholar