Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T17:22:00.097Z Has data issue: false hasContentIssue false

Neural deficits in auditory phonological processing in Chinese children with English reading impairment*

Published online by Cambridge University Press:  10 April 2015

XIANGZHI MENG
Affiliation:
Department of psychology, Peking University, Beijing The Joint PekingU – PolyU Center for Child Development and Learning, China
HANLIN YOU
Affiliation:
Department of psychology, Peking University, Beijing
MEIXIA SONG
Affiliation:
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing
AMY S. DESROCHES
Affiliation:
Department of Psychology, University of Winnipeg, Winnipeg
ZHENGKE WANG
Affiliation:
Department of psychology, Peking University, Beijing
NA WEI
Affiliation:
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing
MENGYU TIAN
Affiliation:
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing
NADINE GAAB
Affiliation:
Harvard Medical School, Harvard Graduate School of Education, and Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Boston Children's Hospital, Boston
GUOSHENG DING*
Affiliation:
State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing
*
Address for correspondence: Guosheng Ding, Ph.D. State Key Laboratory of Cognitive Neuroscience & Learning Beijing Normal University Beijing 100875China. [email protected]

Abstract

Auditory phonological processing skills are critical for successful reading development in English not only in native (L1) speakers but also in second language (L2) learners. However, the neural deficits of auditory phonological processing remain unknown in English-as-the-second-language (ESL) learners with reading difficulties. Here we investigated neural responses during spoken word rhyme judgments in typical and impaired ESL readers in China. The impaired readers showed comparable activation in the left superior temporal gyrus (LSTG), but reduced activation in the left inferior frontal gyrus (LIFG) and left fusiform and reduced connectivity between the LSTG and left fusiform when compared to typical readers. These findings suggest that impaired ESL readers have relative intact representations but impaired manipulation of phonology and reduced or absent automatic access to orthographic representations. This is consistent with previous findings in native English speakers and suggests a common neural mechanism underlying English impairment across the L1 and L2 learners.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was supported by grants from the National Natural Science Foundation of China (NSFC: 81171016, 31170969, 81371206), the National Key Basic Research Program of China (2014CB846102) and The Joint PekingU–PolyU Center for Child Development and Learning.

References

Abutalebi, J., Annoni, J. M., Zimine, I., Pegna, A. J., Seghier, M. L., Lee-Jahnke, H., Lazeyras, F., Cappa, S. F., & Khateb, A. (2008). Language control and lexical competition in bilinguals: an event-related FMRI study. Cereb. Cortex, 18 (7), 1496–505.Google Scholar
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., Cappa, S. F., & Costa, A. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cereb. Cortex, 22 (9), 2076–86.Google Scholar
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20 (3), 242275.Google Scholar
American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). (1994), 80. Washington, DC: American Psychiatric Association.Google Scholar
Aylward, E. H., Richards, T. L., Berninger, V. W., Nagy, W. E., Field, K. M., Grimme, A. C., Richards, A. L., Thomson, J. B., & Cramer, S. C. (2003). Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology, 61 (2), 212–9.Google Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Rao, S. M., & Cox, R. W. (1996). Function of the left planum temporale in auditory and linguistic processing. Brain, 119 (Pt 4), 1239–47.Google Scholar
Binder, J. R., Medler, D. A., Westbury, C. F., Liebenthal, E., & Buchanan, L. (2006). Tuning of the human left fusiform gyrus to sublexical orthographic structure. Neuroimage, 33 (2), 739–48.Google Scholar
Bitan, T., Booth, J. R., Choy, J., Burman, D. D., Gitelman, D. R., & Mesulam, M.-M. (2005). Shifts of effective connectivity within a language network during rhyming and spelling. The Journal of neuroscience, 25 (22), 53975403.CrossRefGoogle ScholarPubMed
Boets, B., Op de Beeck, H. P., Vandermosten, M., Scott, S. K., Gillebert, C. R., Mantini, D., Bulthe, J., Sunaert, S., Wouters, J., & Ghesquiere, P. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342 (6163), 1251–4.Google Scholar
Bokde, A. L., Tagamets, M.-A., Friedman, R. B., & Horwitz, B. (2001). Functional interactions of the inferior frontal cortex during the processing of words and word-like stimuli. Neuron, 30 (2), 609617.Google Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2002). Functional anatomy of intra- and cross-modal lexical tasks. Neuroimage, 16 (1), 722.Google Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2004). Development of brain mechanisms for processing orthographic and phonologic representations. J. Cogn. Neurosci., 16 (7), 1234–49.Google Scholar
Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Choy, J., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2003). Modality-specific and -independent developmental differences in the neural substrate for lexical processing. J Neurolinguistics, 16 (4–5), 383405.Google Scholar
Brem, S., Bach, S., Kucian, K., Guttorm, T. K., Martin, E., Lyytinen, H., Brandeis, D., & Richardson, U. (2010). Brain sensitivity to print emerges when children learn letter-speech sound correspondences. Proc. Natl. Acad. Sci. U. S. A., 107 (17), 7939–44.Google Scholar
Brem, S., Bucher, K., Halder, P., Summers, P., Dietrich, T., Martin, E., & Brandeis, D. (2006). Evidence for developmental changes in the visual word processing network beyond adolescence. Neuroimage, 29 (3), 822–37.Google Scholar
Buchsbaum, B. R., Hickok, G., & Colin, H. (2001). Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cognitive Science, 25 (5), 663678.Google Scholar
Burton, M. W. (2001). The role of inferior frontal cortex in phonological processing. Cognitive Science, 25 (5), 695709.Google Scholar
Burton, M. W., Locasto, P. C., Krebs-Noble, D., & Gullapalli, R. P. (2005). A systematic investigation of the functional neuroanatomy of auditory and visual phonological processing. Neuroimage, 26 (3), 647–61.Google Scholar
Cao, F., Bitan, T., & Booth, J. R. (2008). Effective brain connectivity in children with reading difficulties during phonological processing. Brain Lang., 107 (2), 91101.Google Scholar
Cao, F., Bitan, T., Chou, T. L., Burman, D. D., & Booth, J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. Journal of Child Psychology and Psychiatry, 47 (10), 10411050.Google Scholar
Cardenas-Hagan, E., Carlson, C. D., & Pollard-Durodola, S. D. (2007). The cross-linguistic transfer of early literacy skills: the role of initial L1 and L2 skills and language of instruction. Lang Speech Hear Serv Sch, 38 (3), 249–59.Google Scholar
Castro-Caldas, A., Petersson, K. M., Reis, A., Stone-Elander, S., & Ingvar, M. (1998). The illiterate brain. Learning to read and write during childhood influences the functional organization of the adult brain. Brain, 121 (Pt 6), 1053–63.CrossRefGoogle ScholarPubMed
Celsis, P., Boulanouar, K., Doyon, B., Ranjeva, J. P., Berry, I., Nespoulous, J. L., & Chollet, F. (1999). Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. Neuroimage, 9 (1), 135–44.Google Scholar
Chee, M. W., Caplan, D., Soon, C. S., Sriram, N., Tan, E. W., Thiel, T., & Weekes, B. (1999a). Processing of visually presented sentences in Mandarin and English studied with fMRI. Neuron, 23 (1), 127–37.Google Scholar
Chee, M. W., Tan, E. W., & Thiel, T. (1999b). Mandarin and English single word processing studied with functional magnetic resonance imaging. J. Neurosci., 19 (8), 3050–6.Google Scholar
Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M. A., & Michel, F. (2000). The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123 (Pt 2), 291307.Google Scholar
Cohen, L., Jobert, A., Lebihan, D., & Dehaene, S. (2004). Distinct unimodal and multimodal regions for word processing in the left temporal cortex. Neuroimage, 23 (4), 12561270.Google Scholar
Cohen, L., Lehericy, S., Chochon, F., Lemer, C., Rivaud, S., & Dehaene, S. (2002). Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain, 125 (Pt 5), 1054–69.Google Scholar
Cone, N. E., Burman, D. D., Bitan, T., Bolger, D. J., & Booth, J. R. (2008). Developmental changes in brain regions involved in phonological and orthographic processing during spoken language processing. Neuroimage, 41 (2), 623–35.Google Scholar
Corina, D. P., & McBurney, S. L. (2001). The neural representation of language in users of American Sign Language. J. Commun. Disord., 34 (6), 455–71.Google Scholar
Crinion, J. (2006). Language Control in the Bilingual Brain. Science, 312 (5779), 15371540.CrossRefGoogle ScholarPubMed
De Sousa, D. S., Greenop, K., & Fry, J. (2010). The effects of phonological awareness of Zulu-speaking children learning to spell in English: a study of cross-language transfer. Br. J. Educ. Psychol., 80 (Pt 4), 517–33.Google Scholar
Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., van de Moortele, P. F., Lehericy, S., & Le Bihan, D. (1997). Anatomical variability in the cortical representation of first and second language. Neuroreport, 8 (17), 3809–15.Google Scholar
Dehaene, S., Jobert, A., Naccache, L., Ciuciu, P., Poline, J. B., Le Bihan, D., & Cohen, L. (2004). Letter binding and invariant recognition of masked words: behavioral and neuroimaging evidence. Psychol Sci, 15 (5), 307–13.Google Scholar
Dehaene, S., Naccache, L., Cohen, L., Bihan, D. L., Mangin, J. F., Poline, J. B., & Riviere, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nat. Neurosci., 4 (7), 752–8.Google Scholar
Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Nunes Filho, G., Jobert, A., Dehaene-Lambertz, G., Kolinsky, R., Morais, J., & Cohen, L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330 (6009), 1359–64.Google Scholar
Demonet, J. F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J. L., Wise, R., Rascol, A., & Frackowiak, R. (1992). The anatomy of phonological and semantic processing in normal subjects. Brain, 115 (Pt 6), 1753–68.Google Scholar
Demonet, J. F., Price, C., Wise, R., & Frackowiak, R. S. (1994). A PET study of cognitive strategies in normal subjects during language tasks. Influence of phonetic ambiguity and sequence processing on phoneme monitoring. Brain, 117 (Pt 4), 671–82.Google Scholar
Desroches, A. S., Cone, N. E., Bolger, D. J., Bitan, T., Burman, D. D., & Booth, J. R. (2010). Children with reading difficulties show differences in brain regions associated with orthographic processing during spoken language processing. Brain Res., 1356, 7384.Google Scholar
Devlin, J. T., Matthews, P. M., & Rushworth, M. F. (2003). Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J. Cogn. Neurosci., 15 (1), 7184.CrossRefGoogle ScholarPubMed
Eden, G. F., Jones, K. M., Cappell, K., Gareau, L., Wood, F. B., Zeffiro, T. A., Dietz, N. A., Agnew, J. A., & Flowers, D. L. (2004). Neural changes following remediation in adult developmental dyslexia. Neuron, 44 (3), 411–22.Google Scholar
Friederici, A. D., Kotz, S. A., Scott, S. K., & Obleser, J. (2010). Disentangling syntax and intelligibility in auditory language comprehension. Hum. Brain Mapp., 31 (3), 448–57.Google Scholar
Georgiewa, P., Rzanny, R., Hopf, J. M., Knab, R., Glauche, V., Kaiser, W. A., & Blanz, B. (1999). fMRI during word processing in dyslexic and normal reading children. Neuroreport, 10 (16), 3459–65.Google Scholar
Geva, E., Yaghoub-Zadeh, Z., & Schuster, B. (2000). Understanding individual differences in word recognition skills of ESL children. Ann Dyslexia, 50 (1), 121–54.Google Scholar
Glezer, L. S., Jiang, X., & Riesenhuber, M. (2009). Evidence for Highly Selective Neuronal Tuning to Whole Words in the “Visual Word Form Area”. Neuron, 62 (2), 199204.Google Scholar
Goswami, U. (1990). A special link between rhyming skill and the use of orthographic analogies by beginning readers. J. Child Psychol. Psychiatry, 31 (2), 301–11.Google Scholar
Gottardo, A., Yan, B., Siegel, L. S., & Wade-Woolley, L. (2001). Factors related to English reading performance in children with Chinese as a first language: More evidence of cross-language transfer of phonological processing. J. Educ. Psychol., 93 (3), 530.CrossRefGoogle Scholar
Hagoort, P., Indefrey, P., Brown, C., Herzog, H., Steinmetz, H., & Seitz, R. J. (1999). The neural circuitry involved in the reading of German words and pseudowords: A PET study. J. Cogn. Neurosci., 11 (4), 383–98.Google Scholar
Hernandez, A. (2000). In Search of the Language Switch: An fMRI Study of Picture Naming in Spanish–English Bilinguals. Brain Lang., 73 (3), 421431.Google Scholar
Hernandez, A. (2001). Language Switching and Language Representation in Spanish–English Bilinguals: An fMRI Study. Neuroimage, 14 (2), 510520.Google Scholar
Hernandez, A. E. (2009). Language switching in the bilingual brain: What's next? Brain Lang., 109 (2–3), 133140.Google Scholar
Holm, A., & Dodd, B. (1996). The effect of first written language on the acquisition of English literacy. Cognition, 59 (2), 119–47.Google Scholar
Horwitz, B., Rumsey, J. M., & Donohue, B. C. (1998). Functional connectivity of the angular gyrus in normal reading and dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 95 (15), 8939–44.CrossRefGoogle ScholarPubMed
Illes, J., Francis, W. S., Desmond, J. E., Gabrieli, J. D., Glover, G. H., Poldrack, R., Lee, C. J., & Wagner, A. D. (1999). Convergent cortical representation of semantic processing in bilinguals. Brain Lang., 70 (3), 347–63.Google Scholar
Jobard, G., Crivello, F., & Tzourio-Mazoyer, N. (2003). Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neuroimage, 20 (2), 693712.Google Scholar
Kita, Y., Yamamoto, H., Oba, K., Terasawa, Y., Moriguchi, Y., Uchiyama, H., Seki, A., Koeda, T., & Inagaki, M. (2013). Altered brain activity for phonological manipulation in dyslexic Japanese children. Brain, 136 (Pt 12), 3696–708.Google Scholar
Kovelman, I., Norton, E. S., Christodoulou, J. A., Gaab, N., Lieberman, D. A., Triantafyllou, C., Wolf, M., Whitfield-Gabrieli, S., & Gabrieli, J. D. (2012). Brain basis of phonological awareness for spoken language in children and its disruption in dyslexia. Cereb. Cortex, 22 (4), 754–64.Google Scholar
Kronbichler, M., Hutzler, F., Wimmer, H., Mair, A., Staffen, W., & Ladurner, G. (2004). The visual word form area and the frequency with which words are encountered: evidence from a parametric fMRI study. Neuroimage, 21 (3), 946953.Google Scholar
Kuo, W., Yeh, T., Lee, J., Chen, L., Lee, P., Chen, S., Ho, L., Hung, D., Tzeng, O., & Hsieh, J. (2004). Orthographic and phonological processing of Chinese characters: an fMRI study. Neuroimage, 21 (4), 17211731.Google Scholar
Lesaux, N. K., & Siegel, L. S. (2003). The development of reading in children who speak English as a second language. Dev. Psychol., 39 (6), 1005–19.CrossRefGoogle ScholarPubMed
Lin, C. Y., Xiao, Z. W., Shen, L., Zhang, J. X., & Weng, X. C. (2007). Similar brain activation patterns for writing logographic and phonetic symbols in Chinese. Neuroreport, 18 (15), 1621–5.Google Scholar
McBride-Chang, C., Bialystok, E., Chong, K. K., & Li, Y. (2004). Levels of phonological awareness in three cultures. J. Exp. Child Psychol., 89 (2), 93111.Google Scholar
Mechelli, A., Crinion, J. T., Long, S., Friston, K. J., Ralph, M. A. L., Patterson, K., Mcclelland, J. L., & Price, C. J. (2005). Dissociating reading processes on the basis of neuronal interactions. J. Cogn. Neurosci., 17 (11), 17531765.Google Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O’Doherty, J., Ashburner, J., Frackowiak, R. S., & Price, C. J. (2004). Neurolinguistics: structural plasticity in the bilingual brain. Nature, 431 (7010), 757.Google Scholar
Obleser, J., & Kotz, S. A. (2010). Expectancy constraints in degraded speech modulate the language comprehension network. Cereb. Cortex, 20 (3), 633–40.Google Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9 (1), 97113.Google Scholar
Olofsson, A., & Niedersoe, J. (1999). Early language development and kindergarten phonological awareness as predictors of reading problems: from 3 to 11 years of age. J. Learn. Disabil., 32 (5), 464–72.Google Scholar
Orfanidou, E., Marslen-Wilson, W. D., & Davis, M. H. (2006). Neural response suppression predicts repetition priming of spoken words and pseudowords. J. Cogn. Neurosci., 18 (8), 1237–52.Google Scholar
Parker, J., Green, D. W., Grogan, A., Pliatsikas, C., Filippopolitis, K., Ali, N., Lee, H. L., Ramsden, S., Gazarian, K., Prejawa, S., Seghier, M. L., & Price, C. J. (2012). Where, when and why brain activation differs for bilinguals and monolinguals during picture naming and reading aloud. Cereb. Cortex, 22 (4), 892902.Google Scholar
Perani, D., & Abutalebi, J. (2005). The neural basis of first and second language processing. Curr. Opin. Neurobiol., 15 (2), 202–6.CrossRefGoogle ScholarPubMed
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331 (6157), 585–9.CrossRefGoogle ScholarPubMed
Plaza, M., & Cohen, H. (2007). The contribution of phonological awareness and visual attention in early reading and spelling. Dyslexia, 13 (1), 6776.Google Scholar
Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10 (1), 1535.Google Scholar
Price, C. J., Green, D. W., & von Studnitz, R. (1999). A functional imaging study of translation and language switching. Brain, 122 (Pt 12), 2221–35.Google Scholar
Pu, Y., Liu, H. L., Spinks, J. A., Mahankali, S., Xiong, J., Feng, C. M., Tan, L. H., Fox, P. T., & Gao, J. H. (2001). Cerebral hemodynamic response in Chinese (first) and English (second) language processing revealed by event-related functional MRI. Magn. Reson. Imaging, 19 (5), 643–7.Google Scholar
Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. The Journal of Neuroscience, 16 (16), 52055215.Google Scholar
Pugh, K. R., Mencl, W. E., Shaywitz, B. A., Shaywitz, S. E., Fulbright, R. K., Constable, R. T., Skudlarski, P., Marchione, K. E., Jenner, A. R., Fletcher, J. M., Liberman, A. M., Shankweiler, D. P., Katz, L., Lacadie, C., & Gore, J. C. (2000). The angular gyrus in developmental dyslexia: task-specific differences in functional connectivity within posterior cortex. Psychological science, 11 (1), 51–6.Google Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annu. Rev. Neurosci., 27, 169–92.CrossRefGoogle ScholarPubMed
Sakai, K. L., Miura, K., Narafu, N., & Muraishi, Y. (2004). Correlated functional changes of the prefrontal cortex in twins induced by classroom education of second language. Cereb. Cortex, 14 (11), 1233–9.Google Scholar
Schatschneider, C., Carlson, C. D., Francis, D. J., Foorman, B. R., & Fletcher, J. M. (2002). Relationship of rapid automatized naming and phonological awareness in early reading development: implications for the double-deficit hypothesis. J. Learn. Disabil., 35 (3), 245–56.Google Scholar
Scott, S. K., Blank, C. C., Rosen, S., & Wise, R. J. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123 Pt 12, 2400–6.Google Scholar
Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., Holahan, J. M., Marchione, K. E., Fletcher, J. M., Lyon, G. R., & Gore, J. C. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically- based intervention. Biol. Psychiatry, 55 (9), 926–33.Google Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., Constable, R. T., Marchione, K. E., Fletcher, J. M., Lyon, G. R., & Gore, J. C. (2002a). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological psychiatry, 52 (2), 101–10.Google Scholar
Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., Constable, R. T., Marchione, K. E., Fletcher, J. M., Lyon, G. R., & Gore, J. C. (2002b). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol. Psychiatry, 52 (2), 101–10.Google Scholar
Shaywitz, S. E., Shaywitz, B. A., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., Pugh, K. R., Holahan, J. M., Marchione, K. E., Fletcher, J. M., Lyon, G. R., & Gore, J. C. (2003). Neural systems for compensation and persistence: young adult outcome of childhood reading disability. Biol. Psychiatry, 54 (1), 2533.Google Scholar
Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E., Shankweiler, D. P., Liberman, A. M., Skudlarski, P., Fletcher, J. M., Katz, L., Marchione, K. E., Lacadie, C., Gatenby, C., & Gore, J. C. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proc. Natl. Acad. Sci. U. S. A., 95 (5), 2636–41.Google Scholar
Stanberry, L. I., Richards, T. L., Berninger, V. W., Nandy, R. R., Aylward, E. H., Maravilla, K. R., Stock, P. S., & Cordes, D. (2006). Low-frequency signal changes reflect differences in functional connectivity between good readers and dyslexics during continuous phoneme mapping. Magn. Reson. Imaging, 24 (3), 217229.Google Scholar
Steinbrink, C., Groth, K., Lachmann, T., & Riecker, A. (2012). Neural correlates of temporal auditory processing in developmental dyslexia during German vowel length discrimination: an fMRI study. Brain Lang., 121 (1), 111.Google Scholar
Tan, L. H., Spinks, J. A., Feng, C.-M., Siok, W. T., Perfetti, C. A., Xiong, J., Fox, P. T., & Gao, J.-H. (2003). Neural systems of second language reading are shaped by native language. Hum. Brain Mapp., 18 (3), 158166.Google Scholar
Temple, E. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: Evidence from functional MRI. Proceedings of the National Academy of Sciences, 100 (5), 28602865.Google Scholar
Temple, E., Poldrack, R. A., Salidis, J., Deutsch, G. K., Tallal, P., Merzenich, M. M., & Gabrieli, J. D. (2001). Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Neuroreport, 12 (2), 299307.Google Scholar
Thomason, M. E., Burrows, B. E., Gabrieli, J. D., & Glover, G. H. (2005). Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage, 25 (3), 824–37.CrossRefGoogle ScholarPubMed
Tingley, P. A., Dore, K. A., Lopez, A., Parsons, H., Campbell, E., Bird, E. K., & Cleave, P. (2004). A comparison of phonological awareness skills in early French immersion and English children. J. Psycholinguist. Res., 33 (3), 263–87.Google Scholar
van der Mark, S., Klaver, P., Bucher, K., Maurer, U., Schulz, E., Brem, S., Martin, E., & Brandeis, D. (2011). The left occipitotemporal system in reading: disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. Neuroimage, 54 (3), 24262436.Google Scholar
van Heuven, W. J. B., Schriefers, H., Dijkstra, T., & Hagoort, P. (2008). Language Conflict in the Bilingual Brain. Cereb. Cortex, 18 (11), 27062716.Google Scholar
Vinckier, F., Dehaene, S., Jobert, A., Dubus, J. P., Sigman, M., & Cohen, L. (2007). Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. Neuron, 55 (1), 143–56.Google Scholar
Wagner, R. K., & Torgesen, J. K. (1987). The nature of phonological processing and its causal role in the acquisition of reading skills. Psychol. Bull., 101 (2), 192212.Google Scholar
Wang, X., & Tao, B. (1993). Chinese character recognition test battery and assessment scale for primary school children. Shanghai, China: Shanghai Education Press.Google Scholar
Wang, Y., Kuhl, P. K., Chen, C., & Dong, Q. (2009). Sustained and transient language control in the bilingual brain. Neuroimage, 47 (1), 414422.Google Scholar
Wilkinson, G. S. (1993). WRAT-3: Wide range achievement test administration manual. Wilmington, DE: Wide Range.Google Scholar
Woodcock, R. W. (1998). Woodcock reading mastery tests, revised. American Guidance Service Circle Pines, MN.Google Scholar
Xue, G., Dong, Q., Jin, Z., & Chen, C. (2004). Mapping of verbal working memory in nonfluent Chinese-English bilinguals with functional MRI. Neuroimage, 22 (1), 110.Google Scholar
Yamada, J. (2004). Implications of articulatory awareness in learning literacy in English as a second language. Dyslexia, 10 (2), 95104.Google Scholar
Yoncheva, Y. N., Zevin, J. D., Maurer, U., & McCandliss, B. D. (2010). Auditory selective attention to speech modulates activity in the visual word form area. Cereb. Cortex, 20 (3), 622–32.Google Scholar
You, H., Gaab, N., Wei, N., Cheng-Lai, A., Wang, Z., Jian, J., Song, M., Meng, X., & Ding, G. (2011). Neural deficits in second language reading: fMRI evidence from Chinese children with English reading impairment. Neuroimage, 57 (3), 760–70.Google Scholar
Zatorre, R. J., Evans, A. C., Meyer, E., & Gjedde, A. (1992). Lateralization of phonetic and pitch discrimination in speech processing. Science, 256 (5058), 846–9.Google Scholar
Zatorre, R. J., Meyer, E., Gjedde, A., & Evans, A. C. (1996). PET studies of phonetic processing of speech: review, replication, and reanalysis. Cereb. Cortex, 6 (1), 2130.Google Scholar
Zhang, H. C., & Wang, X. P. (1985). Raven standard progressive matrices: Chinese city revision. Beijing: The National Revision Collaborative Group.Google Scholar
Zou, L., Abutalebi, J., Zinszer, B., Yan, X., Shu, H., Peng, D., & Ding, G. (2012). Second language experience modulates functional brain network for the native language production in bimodal bilinguals. Neuroimage, 62 (3), 1367–75.CrossRefGoogle Scholar
Zou, L., Ding, G., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48 (9), 1197–206.Google Scholar