Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T01:29:53.511Z Has data issue: false hasContentIssue false

A computational account of bilingual aphasia rehabilitation*

Published online by Cambridge University Press:  22 October 2012

SWATHI KIRAN*
Affiliation:
Department of Speech and Hearing Sciences, Boston University & Department of Communication Sciences and Disorders, The University of Texas at Austin
ULI GRASEMANN
Affiliation:
Department of Computer Science, The University of Texas at Austin
CHALEECE SANDBERG
Affiliation:
Department of Speech and Hearing Sciences, Boston University
RISTO MIIKKULAINEN
Affiliation:
Department of Computer Science, The University of Texas at Austin
*
Address for correspondence: Swathi Kiran, Speech Language and Hearing Sciences, Boston University Sargent College, 635 Commonwealth Ave., Boston, MA 02215, USA[email protected]

Abstract

Current research on bilingual aphasia highlights the paucity in recommendations for optimal rehabilitation for bilingual aphasic patients (Edmonds & Kiran, 2006; Roberts & Kiran, 2007). In this paper, we have developed a computational model to simulate an English–Spanish bilingual language system in which language representations can vary by age of acquisition (AoA) and relative proficiency in the two languages to model individual participants. This model is subsequently lesioned by varying connection strengths between the semantic and phonological networks and retrained based on individual patient demographic information to evaluate whether or not the model's prediction of rehabilitation matches the actual treatment outcome. In most cases the model comes close to the target performance subsequent to language therapy in the language trained, indicating the validity of this model in simulating rehabilitation of naming impairment in bilingual aphasia. Additionally, the amount of cross-language transfer is limited both in the patient performance and in the model's predictions and is dependent on that specific patient's AoA, language exposure and language impairment. It also suggests how well alternative treatment scenarios would have fared, including some cases where the alternative would have done better. Overall, the study suggests how computational modeling could be used in the future to design customized treatment recipes that result in better recovery than is currently possible.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The computational component and portion of the treatment component of this research was supported by NIDCD # R21DC009446 to the first and last author. Also, a Clinical Research Grant from American Speech Language Hearing Foundation to the first author supported another component of the treatment project. The authors would like to thank the reviewers for their valuable comments and Danielle Tsibulskly, Anne Alvarez and Ellen Kester for their assistance in data collection.

References

Abutalebi, J., Rosa, P. A., Tettamanti, M., Green, D. W., & Cappa, S. F. (2009). Bilingual aphasia and language control: A follow-up fMRI and intrinsic connectivity study. Brain and Language, 109 (2–3), 141156.CrossRefGoogle ScholarPubMed
Baron, R., Hanley, J. R., Dell, G. S., & Kay, J. (2008). Testing single- and dual-route computational models of auditory repetition with new data from six aphasic patients. Aphasiology, 22 (1), 115.CrossRefGoogle Scholar
Bates, E., D'Amico, S., Jacobsen, T., Szekely, A., Andonova, E., Devescovi, A., Herron, D., Lu, C. C., Pechmann, T., Pleh, C., Wicha, N., Federmeier, K., Gerdjikova, I., Gutierrez, G., Hung, D., Hsu, J., Iyer, G., Kohnert, K., Mehotcheva, T., Orozco-Figueroa, A., Tzeng, A., & Tzeng, O. (2003). Timed picture naming in seven languages. Psychonomic Bulletin Review, 10 (2), 344380.CrossRefGoogle ScholarPubMed
Beeson, P. M., & Robey, R. R. (2006). Evaluating single-subject treatment research: Lessons learned from the aphasia literature. Neuropsychological Review, 16 (4), 161169.CrossRefGoogle ScholarPubMed
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis: Forecasting and control (3rd edn.). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Callan, D. E., Kent, R. D., Guenther, F. H., & Vorperian, H. K. (2000). An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system. Journal of Speech, Language, and Hearing Research, 43 (3), 721736.CrossRefGoogle ScholarPubMed
Caplan, D. (2004). The neuro in cognitive neuropsychology [comment/reply]. Cognitive Neuropsychology, 21 (1), 1720.CrossRefGoogle ScholarPubMed
Caramazza, A., Hillis, A., Leek, E., & Miozzo, M. (1994). The organization of lexical knowledge in the brain: Evidence from category- and modality-specific deficits. In Hirschfeld, L. A. & Gelman, S. A. (eds), Mapping the mind: Domain specificity in cognition and culture, pp. 6884. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Costa, A., La Heij, W., & Navarrete, E. (2006). The dynamics of bilingual lexical access. Bilingualism: Language and Cognition, 9 (2), 137151.CrossRefGoogle Scholar
Croft, S., Marshall, J., Pring, T., & Hardwick, M. (2011). Therapy for naming difficulties in bilingual aphasia: Which language benefits? International Journal of Language & Communication Disorders, 46 (1), 4862.Google ScholarPubMed
Dell, G. S., Schwartz, M. F., Martin, N. M., Saffran, E. M., & Gagnon, D. A. (1997). Lexical access in aphasic and nonaphasic speakers. Psychological Review, 104, 801838.CrossRefGoogle ScholarPubMed
Dell, G. S., Schwartz, M. F., Martin, N., Saffran, E. M., & Gagnon, D. A. (2000). The role of computational models in neuropsychological investigations of language: Reply to Ruml and Caramazza (2000). Psychological Review, 107 (3), 635645.CrossRefGoogle ScholarPubMed
Edmonds, L. [A.], & Kiran, S. (2004). Confrontation naming and semantic relatedness judgements in Spanish/English bilinguals. Aphasiology, 18 (5–7), 567579.CrossRefGoogle Scholar
Edmonds, L. A., & Kiran, S. (2006). Effect of semantic naming treatment on crosslinguistic generalization in bilingual aphasia. Journal of Speech, Language, and Hearing Research, 49 (4), 729748.CrossRefGoogle ScholarPubMed
Farah, M., & Wallace, M. (1992). Semantically bounded anomia: Implications for the neural implementation of naming. Neuropsychologia, 30 (21), 609.CrossRefGoogle ScholarPubMed
Faroqi-Shah, Y., Frymark, T., Mullen, R., & Wang, B. (2010). Effect of treatment for bilingual individuals with aphasia: A systematic review of the evidence. Journal of Neurolinguistics, 23, 319341.CrossRefGoogle Scholar
Foygel, D., & Dell, G. S. (2000). Models of impaired lexical access in speech production. Journal of Memory and Language, 43 (2), 182216.CrossRefGoogle Scholar
Frances, N., & Kucera, H. (1982). Frequency analysis of English usage. Boston, MA: Houghton Mifflin.Google Scholar
Grasemann, U., Kiran, S., Sandberg, C., & Miikkulainen, R. (2012). Computational simulation of lexical-semantic naming deficits in bilingual aphasia. Ms., The University of Texas at Austin.Google Scholar
Grasemann, U., Sandberg, C., Kiran, S., & Miikkulainen, R. (2011). Impairment and rehabilitation in bilingual aphasia: A SOM-based model. Presented at the 8th Workshop on Self-Organizing Maps (WSOM 2011), Espoo, Finland.CrossRefGoogle Scholar
Green, D. W., Grogan, A., Crinion, J., Ali, N., Sutton, C., & Price, C. J. (2010). Language control and parallel recovery of language in individuals with aphasia. Aphasiology, 24 (2), 188209.CrossRefGoogle ScholarPubMed
Green, D. W., Ruffle, L., Grogan, A., Ali, N., Ramsden, S., Schofield, T., Leff, A. P., Crinion, J., & Price, C. J. (2011). Parallel recovery in a trilingual speaker: The use of the Bilingual Aphasia Test as a diagnostic complement to the Comprehensive Aphasia Test. Clinical Linguistics & Phonetics, 25 (6–7), 449512.CrossRefGoogle Scholar
Guenther, F. H., Hampson, M., & Johnson, D. (1998). A theoretical investigation of reference frames for the planning of speech movements. Psychological Review, 105 (4), 611633.CrossRefGoogle ScholarPubMed
Howard, D., Nickels, L., Coltheart, M., & Cole-Virtue, J. (2006). Cumulative semantic inhibition in picture naming: experimental and computational studies. Cognition, 100 (3), 464482.CrossRefGoogle ScholarPubMed
Junque, C., Vendrell, P., Vendrell-Brucet, J. M., & Tobena, A. (1989). Differential recovery in naming in bilingual aphasics. Brain and Language, 36 (1), 1622.CrossRefGoogle ScholarPubMed
Kaplan, E., Goodglass, H., & Weintraub, S. (2001). Boston Naming Test (2nd edn.). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
Keidel, J. L., Welbourne, S. R., & Lambon Ralph, M. A. (2010). Solving the paradox of the equipotential and modular brain: A neurocomputational model of stroke vs. slow-growing glioma. Neuropsychologia, 48 (6), 17161724.CrossRefGoogle Scholar
Kiran, S. (2007). Complexity in the treatment of naming deficits. American Journal of Speech-Language Pathology, 16 (1), 1829.CrossRefGoogle ScholarPubMed
Kiran, S. (2008). Typicality of inanimate category exemplars in aphasia treatment: Further evidence for semantic complexity. Journal of Speech, Language, and Hearing Research, 51 (6), 15501568.CrossRefGoogle ScholarPubMed
Kiran, S., & Bassetto, G. (2008). Evaluating the effectiveness of semantic-based treatment for naming deficits in aphasia: What works? Seminars in Speech and Language, 29 (1), 7182.CrossRefGoogle ScholarPubMed
Kiran, S., & Iakupova, R. (2011). Understanding the relationship between language proficiency, language impairment and rehabilitation. Evidence from a single case study. Clinical Linguistics & Phonetics, 25 (6–7), 565583.CrossRefGoogle Scholar
Kiran, S., & Johnson, L. (2008). Semantic complexity in treatment of naming deficits in aphasia: Evidence from well-defined categories. American Journal of Speech Language Pathology, 17 (4), 389400.CrossRefGoogle ScholarPubMed
Kiran, S., & Roberts, P. M. (2010). Semantic feature analysis treatment in Spanish–English and French–English bilingual aphasia. Aphasiology, 24 (2), 231261.CrossRefGoogle Scholar
Kiran, S., & Roberts, P. M. (2012). What do we know about assessing language impairment in bilingual aphasia? In Gitterman, M. R., Goral, M. & Obler, L. K. (eds.), Aspects of multilingual aphasia, pp. 3551. Clevedon: Multilingual Matters.CrossRefGoogle Scholar
Kiran, S., Sandberg, C., & Sebastian, R. (2011). Treatment of category generation and retrieval in aphasia: Effect of typicality of category items. Journal of Speech, Language, and Hearing Research, 54, 11011117.CrossRefGoogle ScholarPubMed
Kiran, S., & Thompson, C. K. (2003). The role of semantic complexity in treatment of naming deficits: Training semantic categories in fluent aphasia by controlling exemplar typicality. Journal of Speech, Language, and Hearing Research, 46 (4), 773787.CrossRefGoogle ScholarPubMed
Kohnert, K. (2004). Cognitive and cognate-based treatments for bilingual aphasia: A case study. Brain and Language, 91 (3), 294302.CrossRefGoogle ScholarPubMed
Kohnert, K. J., Hernandez, A. E., & Bates, E. (1998). Bilingual performance on the Boston Naming Test: Preliminary norms in Spanish and English. Brain and Language, 65 (3), 422440.CrossRefGoogle ScholarPubMed
Kohonen, T. (2001). Self-organizing maps. Berlin: Springer.CrossRefGoogle Scholar
Kroll, J. F., & Stewart, E. (1994). Category interference in translation and picture naming: Evidence for asymmetric connection between bilingual memory representations. Journal of Memory and Language, 33 (2), 149174.CrossRefGoogle Scholar
Ladefoged, P. (1982). A course in phonetics (2nd edn.). Fort Worth, TX: Harcourt College Publishers.Google Scholar
Laganaro, M., Di Pietro, M., & Schnider, A. (2006). What does recovery from anomia tell us about the underlying impairment: The case of similar anomic patterns and different recovery. Neuropsychologia, 44 (4), 534545.CrossRefGoogle ScholarPubMed
Li, P. (2009). Lexical organization and competition in first and second languages: Computational and neural mechanisms. Cognitive Science, 33 (4), 629664.CrossRefGoogle ScholarPubMed
Li, P., Farkas, I., & MacWhinney, B. (2004). Early lexical development in a self-organizing neural network. Neural Networks, 17 (8–9), 13451362.CrossRefGoogle Scholar
Li, P., & Green, D. W. (2007). Neurocognitive approaches to bilingualism: Asian languages. Bilingualism: Language and Cognition, 10 (2), 117119.CrossRefGoogle Scholar
Li, P., & MacWhinney, B. (2002). PatPho: A phonological pattern generator for neural networks. Behavior Research Methods, Instruments, and Computers, 34, 408415.CrossRefGoogle ScholarPubMed
Li, P., Zhao, X., & MacWhinney, B. (2007). Dynamic self-organization and early lexical development in children. Cognitive Science: A Multidisciplinary Journal, 31 (4), 581612.CrossRefGoogle ScholarPubMed
Lorenzen, B., & Murray, L. L. (2008). Bilingual aphasia: A theoretilcal and clinical review. American Journal of Speech-Language Pathology, 17 (3), 299317.CrossRefGoogle ScholarPubMed
Meinzer, M., Obleser, J., Flaisch, T., Eulitz, C., & Rockstroh, B. (2007). Recovery from aphasia as a function of language therapy in an early bilingual patient demonstrated by fMRI. Neuropsychologia, 45 (6), 12471256.CrossRefGoogle Scholar
Miikkulainen, R. (1993). Subsymbolic natural language processing: An integrated model of scripts, lexicon, and memory. Cambridge, MA: MIT Press.Google Scholar
Miikkulainen, R. (1997). Dyslexic and category-specific impairments in a self-organizing feature map model of the lexicon. Brain and Language, 59, 334366.CrossRefGoogle Scholar
Miikkulainen, R., & Kiran, S. (2009). Modeling the bilingual lexicon of an individual subject. Lecture Notes in Computer Science, 5629, 191199.CrossRefGoogle Scholar
Moretti, R., Bava, A., Torre, P., Antonello, R. M., Zorzon, M., Zivadinov, R., & Cazzato, G. (2001). Bilingual aphasia and subcortical-cortical lesions. Perceptual and Motor Skills, 92 (3.1), 803814.CrossRefGoogle ScholarPubMed
Plaut, D. C. (1996). Relearning after damage in connectionist networks: Toward a theory of rehabilitation. Brain and Language, 52 (1), 2582.CrossRefGoogle Scholar
Reggia, J. A., Gittens, S. D., & Chhabra, J. (2000). Post-lesion lateralisation shifts in a computational model of single-word reading. Laterality: Asymmetries of Body, Brain and Cognition, 5 (2), 133154.CrossRefGoogle Scholar
Roberts, P. M., & Kiran, S. (2007). Assessment and treatment of bilingual aphasia and bilingual anomia. In Ramos, A. A. E. (ed.), Speech and language disorders in bilinguals, pp. 109131. New York: Nova Science.Google Scholar
Schwartz, M. F., & Brecher, A. (2000). A model-driven analysis of severity, response characteristics, and partial recovery in aphasics’ picture naming. Brain and Language, 73 (1), 6291.CrossRefGoogle ScholarPubMed
Spitzer, M., Kischka, U., Guckel, F., Bellemann, M. E., Kammer, T., Seyyedi, S., Weisbrod, M., Schwartz, A., & Brix, G. (1998). Functional magnetic resonance imaging of category-specific cortical activation, evidence for semantic maps. Cognitive Brain Research, 6 (4), 309319.CrossRefGoogle ScholarPubMed
Tschirren, M., Laganaro, M., Michel, P., Martory, M. D., Di Pietro, M., Abutalebi, J., & Annoni, J. M. (2011). Language and syntactic impairment following stroke in late bilingual aphasics. Brain and Language, 119 (3), 238242.CrossRefGoogle ScholarPubMed
Welbourne, S. R., & Lambon Ralph, M. A. (2005). Using computational, parallel distributed processing networks to model rehabilitation in patients with acquired dyslexia: An initial investigation. Aphasiology, 19 (9), 789806.CrossRefGoogle Scholar
Welbourne, S. R., & Lambon Ralph, M. A. (2007). Using parallel distributed processing models to simulate phonological dyslexia: The key role of plasticity-related recovery. Journal of Cognitive Neuroscience, 19 (7), 11251139.CrossRefGoogle ScholarPubMed
Zhao, X., & Li, P. (2010). Bilingual lexical interactions in an unsupervised neural network model. International Journal of Bilingual Education and Bilingualism, 13 (5), 505524.CrossRefGoogle Scholar