Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T03:46:41.708Z Has data issue: false hasContentIssue false

Tectono-metamorphic evolution and significance of shear-zone lithologies in Akebono Rock, Lützow-Holm Complex, East Antarctica

Published online by Cambridge University Press:  09 October 2020

Sotaro Baba*
Affiliation:
Department of Science Education, University of the Ryukyus, Okinawa 903-0213, Japan
Tomokazu Hokada
Affiliation:
National Institute of Polar Research, Tokyo 190-8518, Japan Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Tokyo190-8518, Japan
Atsushi Kamei
Affiliation:
Department of Geosciences, Shimane University, Matsue, Shimane 690-8504, Japan
Ippei Kitano
Affiliation:
Division of Earth Sciences, Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan
Yoichi Motoyoshi
Affiliation:
National Institute of Polar Research, Tokyo 190-8518, Japan
Prayath Nantasin
Affiliation:
Department of Earth Sciences, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
Nugroho Imam Setiawan
Affiliation:
Geological Engineering Department, Engineering Faculty, Universitas Gadjah Mada, DI Yogyakarta 55281, Indonesia
Davaa-Ochir Dashbaatar
Affiliation:
Mongolian University of Science and Technology Ulaanbaatar 14191, Mongolia

Abstract

We describe a major shear zone exposed at Akebono Rock and discuss its deformation and metamorphic history, with a view to providing a better understanding of the geological history of the Lützow-Holm Complex. Three deformation episodes are recognized: D1 produced open folds (F1), boudinage and a regional ductile foliation, whilst the related metamorphic facies is characterized by stable garnet. F1 folding is dominantly preserved in the eastern part of the study area. During D2, an isoclinal to tight asymmetric F2 folds developed mainly in the west part of the region, accompanied by an S2 shear, under biotite facies retrograde metamorphism. The D3 episode involved the formation of the major shear zone, characterized by mylonite and L-tectonite fabrics, which took place at ~610–660°C and 4–5 kbar. Large, sigmoidal garnet core domains have S-shaped inclusion trails, suggesting that syntectonic garnet growth occurred before the formation of the shear zone. Estimated P-T conditions suggest that the sigmoidal garnet-bearing amphibolite was recrystallized at a deeper crustal level and was brought to a higher level during the formation of the shear zone. Crustal-scale deformation involving syntectonic recrystallization and shearing of Akebono Rock is a key issue for reconsidering the evolution of the Lützow-Holm Complex.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baba, S., Horie, K., Hokada, T., Owada, M., Adachi, T. & Shiraishi, K. 2015. Multiple collisions in the East African-Antarctica Orogen: constraints from timing of metamorphism in the Filchnerfjella and Hochlinfjellet Terranes in Central Dronning Maud Land. Journal of Geology, 123, 5577.CrossRefGoogle Scholar
Bhattacharya, A., Mohanty, L., Maji, A., Sen, S.K. & Raith, M. 1992. Non-ideal mixing in the phlogopite-annite boundary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contributions to Mineralogy and Petrology, 111, 8793.CrossRefGoogle Scholar
Hiroi, Y., Shiraishi, K. & Motoyoshi, Y. 1991. Late Proterozoic paired metamorphic complexes in East Antarctica, with special reference to the tectonic significance of ultramafic rocks. In Thomson, M.R.A., ed. Geological evolution of Antarctica. Cambridge, UK: Cambridge University Press, 8387.Google Scholar
Hiroi, Y., Shraishi, K. & Sasaki, K. 1986. Explanatory text of geological map of Akebono Rock, Antarctica. Antarctic geological map series, sheet 16 Akebono Rock. Tokyo: NIPR.Google Scholar
Hiroi, Y., Motoyoshi, Y., Ishikawa, N., Hokada, T. & Shiraishi, K. 2008 Origin of xenocrystic garnet and kyanite in clinopyroxene-hornblende-bearing adakitic meta-tonalites from Cape Hinode, Prince Olav Coast, East Antarctica. In Satish-Kumar, M., Motoyoshi, Y., Osanai, Y., Hiroi, Y., & Shiraishi, K., eds., Geodynamic evolution of East Antarctica: a key to the east-west Gondwana connection. Special Publication of the Geological Society of London, No. 308, 333350.Google Scholar
Hiroi, Y., Motoyoshi, Y., Satish-Kumar, M., Kagashima, S., Suda., Y. & Ishikawa, N. 2006. Granulites from Cape Hinode in the amphibolite-facies eastern part of Prince Olav Coast, East Antarctica: new evidence for allochthonous blocks in the Lützow-Holm Bay Complex. Polar Geoscience, 19, 89108.Google Scholar
Hodges, K. & Spear, F.S. 1982. Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. American Mineralogist, 67, 11181134.Google Scholar
Hoisch, T.D. 1990. Empirical calibration of six geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contributions to Mineralogy and Petrology, 104, 225234.CrossRefGoogle Scholar
Holdaway, M.J. 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist, 85, 881892.CrossRefGoogle Scholar
Holland, T. & Blundy, J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116, 433447.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. & Welch, M.D. 2012. Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Ikeda, T. & Kawakami, T. 2004. Structural analysis of the Lützow-Holm Complex in Akarui Point, East Antarctica, and overview of the complex. Polar Geoscience, 17, 2234.Google Scholar
Ishikawa, M., Motoyoshi, Y., Fraser, G. L. & Kawasaki, T. 1994. Structural evolution of Rundvågshetta region, Lützow-Holm Bay, East Antarctica. Proceedings of the NIPR Symposium on Antarctic Geosciences, 7, 6989.Google Scholar
Jacobs, J. & Thomas, R.J. 2004. Himalayan-type indenter-escape tectonics model for the southern part of the late Neoproterozoic-early Paleozoic East African-Antarctic Orogen. Geology, 32, 721724.CrossRefGoogle Scholar
Jacobs, J., Opås, B., Elburg, M.A., Läufer, A., Estrada, S., Ksienzyk, A.K., et al. 2017. Cryptic sub-ice geology revealed by a U-Pb zircon study of glacial till in Dronning Maud Land, East Antarctica. Precambrian Research, 294, 114.CrossRefGoogle Scholar
Kawakami, T. & Ikeda, T. 2004. Structural evolution of the Ongul Islands, Lützow-Holm Complex, East Antarctica. Polar Geoscience, 17, 1221.Google Scholar
Kohn, M.J. & Spear, F.S. 1990. Two new geobarometers for garnet amphibolites, with applications to southeast Vermont. American Mineralogist, 75, 8996.Google Scholar
Le Breton, N. & Thompson, A.B. 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology, 99, 226237.CrossRefGoogle Scholar
Locock, A.J. 2014. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers and Geosciences, 62, 111.CrossRefGoogle Scholar
Meert, J. 2003. A synopsis of events related to the assembly of east Gondwana. Tectonophysics, 362, 140.CrossRefGoogle Scholar
Motoyoshi, Y. & Ishikawa, M. 1997. Metamorphic and structural evolution on granulites from Rundvagshetta, Lützow-Holm Bay, East Antarctica. In Ricci, C.L., ed. The Antarctic region: geological evolution and processes. Siena: Terra Antarctica, 6572.Google Scholar
Nakai, Y., Kano, T. & Yoshikura, S. 1980. Explanatory text of geological map of Cape Ryûgû, Antarctica. Antarctic geological map series, sheet 15 Cape Ryûgû. Tokyo: NIPR.Google Scholar
Nogi, Y., Jokat, W., Kitada, K. & Steinhage, D. 2013. Geological structures inferred from airborne geophysical surveys around Lützow-Holm Bay, East Antarctica. Precambrian Research, 234, 279287.CrossRefGoogle Scholar
Osanai, Y., Nogi, Y., Baba, S., Nakano, N., Adachi, T., Hokada, T., et al. 2013. Geologic evolution of the Sør Rondane Mountains, East Antarctica: collision tectonics proposed based on metamorphic processes and magnetic anomalies. Precambrian Research, 234, 829.CrossRefGoogle Scholar
Passchier, C.W. & Trouw, R.A. 1996. Microtectonics. Berlin: Springer, 289 pp.Google Scholar
Powell, C.McA. & Vernon, R.H. 1979. Growth and rotation history of garnet porphyroblasts with inclusion spinels in a Karakoram schist. Tectonophysics, 54, 2543.CrossRefGoogle Scholar
Robyr, M., Carlson, W.D., Passchier, C. & Vonlanthen, P. 2009. Microstructural, chemical and textural records during growth of snowball garnet. Journal of Metamorphic Geology, 27, 423437.CrossRefGoogle Scholar
Shiraishi, K., Hokada, T., Fanning, C.M., Misawa, K. & Motoyoshi, Y. 2003. Timing of thermal evens in east Dronning Maud Land, East Antarctica. Polar Geoscience, 16, 7699.Google Scholar
Shiraishi, K., Dunkley, D.J., Hokada, T., Fanning, C.M., Kagami, H. & Hamamoto, T. 2008. Geochronological constraints on the late Proterozoic to Cambrian crustal evolution of East Dronning Maud Land, East Antarctica: a synthesis of SHRIMP U-Pb age and Nd model age data. In Satish-Kumar, M., Motoyoshi, Y., Osanai, Y., Hiroi, Y. & Shiraishi, K., eds., Geodynamic evolution of East Antarctica: a key to the east-west Gondwana connection. Special Publication of the Geological Society of London, No. 308, 2167.Google Scholar
Shiraishi, K., Ellis, D.J., Hiroi, Y., Fanning, C.M., Motoyoshi, Y. & Nakai, Y. 1994. Cambrian orogenic belt in East Antarctica and Sri Lanka: implication for Gondwana assembly. Journal of Geology, 102, 4765.CrossRefGoogle Scholar
Stern, R.J. 1994. Arc assembly and continental collision in the Neoproterozoic East Africa Orogen: implications for the consolidation of Gondwana. Annual Review of Earth and Planetary Sciences, 22, 319351.CrossRefGoogle Scholar
Suda, Y., Kawano, Y., Yaxley, G., Korenaga, H. & Hiroi, Y. 2008. Magmatic evolution and tectonic setting of metabasites from Lützow-Holm Complex, East Antarctica. In Satish-Kumar, M., Motoyoshi, Y., Osanai, Y., Hiroi, Y. & Shiraishi, K., eds., Geodynamic evolution of East Antarctica: a key to the east-west Gondwana connection. Special Publication of the Geological Society of London, No. 308, 211233.CrossRefGoogle Scholar
Takahashi, K., Tsunogae, T., Santoshi, M. & Takamura, Y. 2018. Paleoproterozoic (c. 1.8 Ga) arc magmatism in the Lützow-Holm Complex, East Antarctica: implications for crustal growth and terrane assembly in erstwhile Gondwana fragments. Journal of Asian Earth Sciences, 157, 245265.CrossRefGoogle Scholar
Takamura, Y., Tsunogae, T., Santosh, M. & Tsutsumi, Y. 2018. Detrital zircon geochronology of the Lützow-Holm Complex, East Antarctica: implications for East Antarctica - Sri Lanka correlation. Geoscience Frontiers, 9, 355375CrossRefGoogle Scholar
Talarico, F.M., Stump, E., Gootee, B.F., Foland, K.A., Palmerri, R., van Schmus, W.R., et al. 2007. First evidence of a ‘Barrovian'-type metamorphic regime in the Ross orogen of the Byrd Glacier area, central Transantarctic Mountains. Antarctic Science, 19, 451470.CrossRefGoogle Scholar
Tsunogae, T., Yang, Q.Y. & Santosh, M. 2015. Early Neoproterozoic arc magmatism in the Lützow-Holm Complex, East Antarctica: petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes and tectonic implications. Precambrian Research, 266, 467489.CrossRefGoogle Scholar
Whitney, D.L. & Evans, B. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Wu, C.M. & Chen, B.H. 2006. Valid garnet-biotite (GB) geothermometry and garnet-aluminum silicate-plagioclase-quartz (GASP) geobarometry in metapelitic rocks. Lithos, 89, 123.CrossRefGoogle Scholar
Wu, C.M. & Zhao, G.C. 2007. The metapelitic garnet-biotite-muscovite-aluminosilicate-quartz (GBMAQ) geobarometer. Lithos, 97, 365372.CrossRefGoogle Scholar
Yoshida, M. 1979. Tectonics and metamorphism of the region around Lutzow-Holmbukta, East Antarctica. Memoirs of National Institute of Polar Research Special Issue, 14, 2840.Google Scholar
Yoshimura, Y., Motoyoshi, Y. & Miyamoto, T. 2008. Sapphirine + quartz association in garnet: implication for ultrahigh-temperature metamorphism at Rundvågshetta, Lützow-Holm Complex, East Antarctica. Special Publication of the Geological Society of London, No. 308, 377390.CrossRefGoogle Scholar
Supplementary material: PDF

Baba et al. supplementary material

Tables S1-S4

Download Baba et al. supplementary material(PDF)
PDF 59 KB
Supplementary material: File

Baba et al. supplementary material

Tables S1-S4

Download Baba et al. supplementary material(File)
File 69.1 KB