Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T05:22:32.113Z Has data issue: false hasContentIssue false

Reference genes validation for qPCR normalization in Deschampsia antarctica during abiotic stresses

Published online by Cambridge University Press:  30 July 2010

Hyoungseok Lee*
Affiliation:
Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI, Incheon 406-840, Korea
Ji Hyun Kim
Affiliation:
Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI, Incheon 406-840, Korea
Mira Park
Affiliation:
Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI, Incheon 406-840, Korea
Il-Chan Kim
Affiliation:
Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI, Incheon 406-840, Korea
Joung Han Yim
Affiliation:
Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI, Incheon 406-840, Korea
Hong Kum Lee
Affiliation:
Polar BioCenter, Korea Polar Research Institute (KOPRI), KORDI, Incheon 406-840, Korea

Abstract

Quantitative real time PCR is the most sensitive and widely used method for the analysis of gene expression. The choice of one or several reference genes is very important for a normalization process, which should not fluctuate under stress conditions, to reduce error rate and bias during experimental procedure. In the present study, the expression stability of nine reference genes (two actins, two tubulins, two elongation factor 1α, two ubiquitins, and cyclophilin) during abiotic stresses such as cold, salt, and PEG treatments, was evaluated on Deschampsia antarctica plants using geNorm software. Results from various experimental conditions indicated that cyclophilin and elongation factor 1α were the most stable genes in the leaf and the root, respectively. The expression of the other reference genes varied under stress. The relative quantification of the TACR7 gene varied according to the kind and the number of reference genes used, suggesting the importance of considering the implications of a combination of reference genes under different stress conditions and in different tissues.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abd-Elsalam, K.A. 2003. Non-gel based techniques for plant pathogen genotyping. Acta Microbiologica Polonica, 52, 329341.Google ScholarPubMed
Alberdi, M., Bravo, L.A., Guitiérrez, A.H., Gidekel, M.Corcuera, L.J. 2002. Ecophysiology of Antarctic vascular plants. Physiologia Plantanarum, 115, 479486.CrossRefGoogle ScholarPubMed
Brunner, A.M., Yakovlev, I.A.Strauss, S.H. 2004. Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology, 4, 14.CrossRefGoogle ScholarPubMed
Bubner, B.Baldwin, I.T. 2004. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Reports, 5, 263271.CrossRefGoogle Scholar
Burton, R.A., Shirley, N.J., King, B.J., Harvey, A.J.Fincher, G.B. 2004. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiology, 134, 224236.CrossRefGoogle ScholarPubMed
Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K.Scheible, W.-R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in arabidopsis. Plant Physiology, 139, 517.CrossRefGoogle ScholarPubMed
Edwards, J.A.Smith, R.I.L. 1988. Photosynthesis and respiration of Colobanthus quitensis and Deschampsia antarctica from the maritime Antarctic. British Antarctic Survey Bulletin, No. 81, 4363.Google Scholar
Gachon, C., Mingam, A.Charrier, B. 2004. Real-time PCR: what relevance to plant studies. Journal of Experimental Botany, 55, 14451454.Google Scholar
Gana, J.A., Sutton, F.Kenefick, D.G. 1997. cDNA structure and expression patterns of a low-temperature-specific wheat gene TACR7. Plant Molecular Biology, 34, 643650.CrossRefGoogle ScholarPubMed
Gutierrez, L., Mauriat, M., Guénin, S., Pelloux, J., Lefebvre, J.F., Louvet, R., Rusterucci, C., Moritz, T., Guerineau, F., Bellini, C.van Wuytswinkel, O. 2008. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal, 6, 609618.Google Scholar
Gutjahr, C., Banba, M., Croset, V., An, K., Miyao, A., An, G., Hirochika, H., Imaizumi-Anraku, H.Paszkowski, U. 2008. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell, 20, 29893005.CrossRefGoogle ScholarPubMed
Kim, B.R., Nam, H.Y., Kim, S.U., Kim, S.I.Chang, Y.J. 2003. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Letters, 25, 18691872.CrossRefGoogle ScholarPubMed
Lee, H., Cho, H.H., Kim, I.C., Yim, J.H., Lee, H.K.Lee, Y.K. 2008. Expressed sequence tag analysis of Antarctic hairgrass Deschampsia antarctica from King George Island, Antarctica. Molecules and Cells, 25, 258264.Google Scholar
Marmiroli, N., Maestri, E., Gullì, M., Malcevschi, A., Peano, C., Bordoni, R.De Bellis, G. 2008. Methods for detection of GMOs in food and feed. Analytical and Bioanalytical Chemistry, 392, 369384.Google Scholar
Nakashima, A., Chen, L., Phuong Thao, N., Fujiwara, M., Wong, H.L., Kuwano, M., Umemura, K., Shirasu, K., Kawasaki, U.Shimamoto, K. 2008. RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex. Plant Cell, 20, 22652279.Google Scholar
Nicot, N., Hausman, J.F., Hoffmann, L.Evers, D. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany, 56, 29072914.CrossRefGoogle ScholarPubMed
Paolacci, A., Tanzarella, O., Porceddu, E.Ciaffi, M. 2009. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Molecular Biology, 10, 11.Google Scholar
Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 20022007.Google Scholar
Radonic, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W.Nitsche, A. 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, 313, 856862.CrossRefGoogle ScholarPubMed
Rakusa-Suszczewski, S., ed. 1993. The maritime Antarctic coastal ecosystem of Admiralty Bay. Warsaw: Department of Antarctic Biology, Polish Academy of Sciences, 216 pp.Google Scholar
Reid, K.E., Olsson, N., Schlosser, J., Peng, F.Lund, S.T. 2006. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology, 14, 627.Google Scholar
Schmittgen, T.Zakrajsek, B.A. 2000. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods, 46, 6981.CrossRefGoogle ScholarPubMed
Song, Y., Wang, L.Xiong, L. 2009. Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta, 229, 577591.CrossRefGoogle ScholarPubMed
Stürzenbaum, S.R.Kille, P. 2001. Control genes in quantitative molecular biological techniques: the variability of invariance. Comparative Biochemistry and Physiology, B130, 281289.CrossRefGoogle Scholar
Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., Grisar, T., Igout, A.Heinen, E. 1999. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology, 75, 291295.Google Scholar
Thomas, C., Meyer, D., Wolff, M., Himber, C., Alioua, M.Steinmetz, A. 2003. Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Molecular Biology, 52, 10251036.CrossRefGoogle ScholarPubMed
Tong, Z., Gao, Z., Wang, F., Zhou, J.Zhang, Z. 2009. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Molecular Biology, 10, 71.Google Scholar
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., van Roy, N., De Paepe, A.Speleman, F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, research0034.1.Google Scholar
Volkov, R.A., Panchuk, I.I.Schöffl, F. 2003. Heat-stress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. Journal of Experimental Botany, 54, 23432349.CrossRefGoogle ScholarPubMed
Walker, N.J. 2002. A technique whose time has come. Science, 296, 557559.Google Scholar