Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T15:54:14.132Z Has data issue: false hasContentIssue false

Provenance and post-depositional low-temperature evolution of the James Ross Basin sedimentary rocks (Antarctic Peninsula) based on fission track analysis

Published online by Cambridge University Press:  07 July 2009

Martin Svojtka*
Affiliation:
Institute of Geology, Academy of Sciences, v.v.i., Rozvojová 269, 16500 Praha 6, Czech Republic
Daniel Nývlt
Affiliation:
Czech Geological Survey, Klárov 3, 118 21 Praha, Czech Republic
Masaki Murakami
Affiliation:
Institute of Geology, Academy of Sciences, v.v.i., Rozvojová 269, 16500 Praha 6, Czech Republic
Jitka Vávrová
Affiliation:
Institute of Geochemistry, Charles University, Albertov 6, 12843 Praha 2, Czech Republic
Jiří Filip
Affiliation:
Institute of Geology, Academy of Sciences, v.v.i., Rozvojová 269, 16500 Praha 6, Czech Republic
Petr Mixa
Affiliation:
Czech Geological Survey, Klárov 3, 118 21 Praha, Czech Republic

Abstract

Zircon and apatite fission track (AFT) thermochronology was applied to the James Ross Basin sedimentary rocks from James Ross and Seymour islands. The probable sources of these sediments were generated in Carboniferous to Early Paleogene times (∼315 to 60 Ma). The total depths of individual James Ross Basin formations are discussed. The AFT data were modelled, and the thermal history model was reconstructed for samples from Seymour Island. The first stage after a period of total thermal annealing (when the samples were above 120°C) involved Late Triassic cooling (∼230 to 200 Ma) and is followed by a period of steady cooling through the whole apatite partial annealing zone (PAZ, 60–120°C) to minimum temperature in Paleocene/Early Eocene. The next stage was the maximum burial of sedimentary rocks in the Eocene (∼35 Ma, 1.1–1.8 km) and the final cooling and uplift of Seymour Island sedimentary rocks at ∼35 to 20 Ma.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbarand, J., Carter, A., Wood, I.Hurford, T. 2003. Compositional and structural control of fission-track annealing in apatite. Chemical Geology, 198, 107137.CrossRefGoogle Scholar
Bohoyo, F., Galindo-Zaldivar, J., Maldonado, A., Schreider, A.A.Surinach, E. 2002. Basin development subsequent to ridge-trench collision: the Jane Basin, Antarctica. Marine Geophysical Researches, 23, 413421.CrossRefGoogle Scholar
Brix, M.R., Faundeez, V., Hervé, F., Solari, M., Fernandez, J., Carter, A.Stöckhert, B. 2007. Thermochronologic constraints on the tectonic evolution of the western Antarctic Peninsula in late Mesozoic and Cenozoic times. In Cooper, A.K. & Raymond, C.R.et al., eds. Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, USGS Open-File Report 2007-1047, Short Research Paper, 101, 5 pp.Google Scholar
Brown, R.W., Summerfield, M.A.Gleadow, A.J. 1994. Apatite Fission Track analysis: its potential for the estimation of denudation rates and implications for models of long-term landscape development. In Kirby, M.J., ed. Models and theoretical geomorphology. Chichester: Wiley, 2353.Google Scholar
Buatois, L.A.Medina, F.J. 1993. Stratigraphy and depositional setting of the Lagrelius Point Formation from the Lower Cretaceous of James Ross Island, Antarctica. Antarctic Science, 5, 379388.CrossRefGoogle Scholar
Carter, A. 1999. Present status and future avenues of source region discrimination and characterization using fission track analysis. Sedimentary Geology, 124, 3145.CrossRefGoogle Scholar
Crame, J.A., Francis, J.E., Cantrill, D.J.Pirrie, D. 2004. Maastrichtian stratigraphy of Antarctica. Cretaceous Research, 25, 411423.CrossRefGoogle Scholar
Crame, J.A., Pirrie, D.Riding, J.B. 2006. Mid-Cretaceous stratigraphy of the James Ross Basin, Antarctica. In Francis, J.E., Pirrie, D. & Crame, J.A., eds. Cretaceous-Tertiary high-latitude palaeoenvironments, James Ross Basin, Antarctica. London: Geological Society, Special Publications, 258, 7–19.Google Scholar
Crame, J.A., Pirrie, D., Riding, J.B.Thomson, M.R.A. 1991. Campanian–Maastrichtian (Cretaceous) stratigraphy of the James Ross Island area, Antarctica. Journal of the Geological Society, London, 148, 11251140.CrossRefGoogle Scholar
del Valle, R.A., Elliot, D.H.Macdonald, D.I.M. 1992. Sedimentary basins on the east flank of the Antarctic Peninsula: proposed nomenclature. Antarctic Science, 4, 477478.CrossRefGoogle Scholar
Dingle, R.V.Lavelle, M. 1998. Antarctic peninsular cryosphere: Early Oligocene (c. 30 Ma) initiation and a revised glacial chronology. Journal of the Geological Society, London, 155, 433437.CrossRefGoogle Scholar
Dingle, R.V.Lavelle, M. 2000. Antarctic Peninsula Late Cretaceous-Early Cenozoic palaeoenvironments and Gondwana palaeogeographies. Journal of African Earth Sciences, 31, 91105.CrossRefGoogle Scholar
Dunkl, I. 2002. Trackkey: a Windows program for calculation and graphical presentation of fission track data. Computers and Geosciences, 28, 312.CrossRefGoogle Scholar
Elliot, D.H. 1988. Tectonic Setting and Evolution of the James Ross Basin, Northern Antarctic Peninsula. In Feldmann, R.M. & Woodburne, M.O., eds. Geology and Paleontology of Seymour Island, Antarctic Peninsula. Memoirs: Geological Society of America, 169, 541555.CrossRefGoogle Scholar
Elliot, D.H.Trautman, T.A. 1982. Lower Tertiary strata on Seymour Island, Antarctic Peninsula. In Craddock, C.,ed. Antarctic geoscience. Madison: University of Wisconsin Press, 287297.Google Scholar
Farquaharson, G.W. 1982. Late Mesozoic sedimentation in the northern Antarctic Peninsula and its relationship to the southern Andes. Journal of the Geological Society, London, 139, 721727.CrossRefGoogle Scholar
Francis, J.E., Crame, J.A.Pirrie, D. 2006. Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica: introduction. In Francis, J.E., Pirrie, D. & Crame, J.A., eds. Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica. Special Publications of the Geological Society, London, 258, 15.Google Scholar
Franců, J., Rudinec, R.Šimánek, V. 1989. Hydrocarbon generation zone in the East Slovakian Neogene Basin: model and geochemical evidence. Geologica Carpathica, 40, 355381.Google Scholar
Franců, J., Müller, P., Šucha, V.Zatkalíková, V. 1990. Organic matter and clay minerals as indicators of thermal historyin the Transcarpathian depression (East Slovakian Neogene basin) and the Vienna Basin. Geologica Carpathica, 41, 535546.Google Scholar
Galbraith, R.F. 1981. On statistical models for fission track counts. Mathematical Geology, 13, 471488.CrossRefGoogle Scholar
Green, P.F. 1981a. A new look at statistics in fission-track dating. Nuclear Tracks, 5, 7786.CrossRefGoogle Scholar
Green, P.F. 1981b. “Track-in-track” length measurements in annealed apatites. Nuclear Tracks, 5, 121128.CrossRefGoogle Scholar
Green, P.F., Duddy, I.R., Gleadow, A.J.W., Laslett, G.M.Tingate, P.R. 1986. Thermal annealing of fission tracks in apatite, 1. A qualitative description. Chemical Geology, 59, 237253.CrossRefGoogle Scholar
Hathway, B. 2000. Continental rift to back-arc basin: Jurassic-Cretaceous stratigraphical and structural evolution of the Larsen Basin, Antarctic Peninsula. Journal of the Geological Society, London, 157, 417432.CrossRefGoogle Scholar
Hurford, A.J. 1990. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chemical Geology, 80, 171178.Google Scholar
Hurford, A.J.Green, P.F. 1982. A user’s guide to fission track dating calibration. Earth and Planetary Science Letters, 59, 343354.CrossRefGoogle Scholar
Ineson, J.R. 1985. Submarine glide blocks from the Lower Cretaceous of the Antarctic Peninsula. Sedimentology, 32, 659670.CrossRefGoogle Scholar
Ineson, J.R. 1989. Coarse-grained submarine fan and slope apron deposits in a Cretaceous back-arc basin, Antarctica. Sedimentology, 36, 793819.CrossRefGoogle Scholar
Ineson, J.R., Crame, J.A.Thomson, M.R.A. 1986. Lithostratigraphy of the Cretaceous strata of west James Ross Island, Antarctica. Cretaceous Research, 7, 141159.CrossRefGoogle Scholar
Ivany, L.C., Van Simaeys, S., Domack, E.W.Samson, S.D. 2006. Evidence for an earliest Oligocene ice sheet on the Antarctic Peninsula. Geology, 34, 377380.CrossRefGoogle Scholar
Ketcham, R.A. & Apatiteto Zircon, Inc. 2007. HeFTy software version 1.4.Google Scholar
Ketcham, R.A., Donelick, R.A.Carlson, W.D. 1999. Variability of apatite fission-track annealing kinetics; III. Extrapolation to geological time scales. American Mineralogist, 84, 12351255.CrossRefGoogle Scholar
Laslett, G.M., Kendull, W.S., Gleadow, A.J.W.Duddy, I.R. 1982. Bias in measurement of fission-track length distributions. Nuclear Tracks, 6, 7985.Google Scholar
Leat, P.T., Scarrow, J.H.Millar, I.L. 1995. On the Antarctic Peninsula batholith. Geological Magazine, 132, 399412.CrossRefGoogle Scholar
Macdonald, D.I.M., Barker, P.F., Garrett, S.W., Ineson, J.R., Pirrie, D., Storey, B.C., Whitham, A.G., Kinghorn, R.R.F.Marshall, J.E.A. 1988. A preliminary assessment of the hydrocarbon potential of the Larsen Basin, Antarctica. Marine and Petroleum Geology, 5, 3453.CrossRefGoogle Scholar
Macellari, C.E. 1988. Stratigraphy, sedimentology and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island (Antarctic Peninsula). Geological Society of America, Memoirs, 169, 2553.CrossRefGoogle Scholar
Marenssi, S.A., Net, L.I.Santillana, S.N. 2002. Provenance, environmental and paleogeographic controls on sandstone composition in an incised-valley system: the Eocene La Meseta Formation, Seymour Island, Antarctica. Sedimentary Geology, 150, 301321.CrossRefGoogle Scholar
McArthur, J.M., Crame, J.A.Thirlwall, M.F. 2000. Definition of Late Cretaceous stage boundaries in Antarctica using strontium isotope stratigraphy. Journal of Geology, 108, 623640.CrossRefGoogle Scholar
Medina, F.J., Buatois, L.A., Strelin, J.Martino, E. 1992. La fauna del Cabo Polanski, Isla James Ross. In Rinaldi, C.,ed. Geología de la Isla James Ross. Buenos Aires: Instituto Antártico Argentino, 193199.Google Scholar
Millar, I.L., Pankhurst, R.J.Fanning, C.M. 2002. Basement chronology of the Antarctic Peninsula: recurrent magmatism and anatexis in the Palaeozoic Gondwana Margin. Journal of the Geological Society, London, 159, 145157.CrossRefGoogle Scholar
Millar, I.L., Willan, R.C.R., Wareham, C.D.Boyce, A.J. 2001. The role of crustal and mantle sources in the genesis of granitoids of the Antarctic Peninsula and adjacent crustal blocks. Journal of the Geological Society, London, 158, 855867.CrossRefGoogle Scholar
Murakami, M.Svojtka, M. 2007. Zircon fission-track technique: a laboratory procedure adopted at the Institute of Geology, Academy of Sciences of the Czech republic, v.v.i. Fission Track News Letters, 20, 1319.Google Scholar
Olivero, E.B., Scasso, R.A.Rinaldi, C.A. 1986. Revision of the Marambio Group, James Ross Island, Antarctica. Instituto Antartico Argentino, Contribución, 331, 128.Google Scholar
Pankhurst, R.J. 1982. Rb–Sr geochronology of Graham Land, Antarctica. Journal of the Geological Society of London, 139, 701711.CrossRefGoogle Scholar
Pirrie, D. 1991. Controls on the petrographic evolution of an active margin sedimentary sequence; the Larsen Basin, Antarctica. Special Publication of the Geological Society of London, 57, 231249.CrossRefGoogle Scholar
Pirrie, D. 1994. Petrography and provenance of the Marambio Group, Vega Island, Antarctica. Antarctic Science, 6, 517527.CrossRefGoogle Scholar
Pirrie, D., Crame, J.A., Lomas, S.A.Riding, J.B. 1997. Late Cretaceous stratigraphy of the Admiralty Sound region, James Ross Basin, Antarctica. Cretaceous Research, 18, 109137.CrossRefGoogle Scholar
Pirrie, D., Ditchfield, P.W.Marshall, J.D. 1994. Burial diagenesis and pore-fluid evolution in a Mesozoic back-arc basin: the Marambio Group, Vega Island, Antarctica. Journal of Sedimentary Research, A64, 541552.Google Scholar
Pirrie, D., Duane, A.M.Riding, J.B. 1992. Jurassic-Tertiary stratigraphy and palynology of the James Ross Basin: review and introduction. Antarctic Science, 4 (3), 259266.CrossRefGoogle Scholar
Pirrie, D.Marshall, J.D. 1990. High-paleolatitude Late Cretaceous paleotemperatures: new data from James Ross Island, Antarctica. Geology, 18, 3134.2.3.CO;2>CrossRefGoogle Scholar
Porebski, S.J. 1995. Facies architecture in a tectonically controlled incised-valley estuary: La Meseta Formation (Eocene) of Seymour Island, Antarctic Peninsula. Studia Geologica Polonica, 107, 797.Google Scholar
Porebski, S.J. 2000. Shelf-valley compound fill produced by fault subsidence and eustatic sea-level changes, Eocene La Meseta Formation, Seymour Island, Antarctica. Geology, 28, 147150.2.0.CO;2>CrossRefGoogle Scholar
Riding, J.B.Crame, J.A. 2002. Aptian to Coniacian (Early–Late Cretaceous) palynostratigraphy of the Gustav Group, James Ross Basin, Antarctica. Cretaceous Research, 23, 739760.CrossRefGoogle Scholar
Riding, J.B., Crame, J.A., Dettmann, M.E.Cantrill, D.J. 1998. The age of the base of the Gustav Group in the James Ross Basin, Antarctica. Cretaceous Research, 19, 87105.CrossRefGoogle Scholar
Rinaldi, C.A. 1982. The Upper Cretaceous in the James Ross Island Group. Madison, WI: University Wisconsin Press, 281–286.Google Scholar
Rinaldi, C.A., Massabie, A., Morelli, J., Rosenman, H.L.del Valle, R.A. 1978. Geología de la isla Vicecomodoro Marambio. Instituto Antartico Argentino, Contribución, 217, 137.Google Scholar
Scasso, R.A.Kiessling, W. 2001. Diagenesis of Upper Jurassic concretions from the Antarctic Peninsula. Journal of Sedimentary Research, 71, 88100.CrossRefGoogle Scholar
Scasso, R.A., Olivero, E.B.Buatois, L.A. 1991. Lithofacies, biofaces, and ichnoassemblage evolution of a shallow submarine volcanoclastic fan-shelf depositional system (Upper Cretaceous, James Ross Island, Antarctica). Journal of South American Sciences, 4, 239260.Google Scholar
Smellie, J.L. 1999. Lithostratigraphy of Miocene–Recent, alkaline volcanic fields in the Antarctic Peninsula and eastern Ellsworth Land. Antarctic Science, 11, 362378.CrossRefGoogle Scholar
Smellie, J.L., McArthur, J.M., McIntosh, W.C.Esser, R. 2006. Late Neogene interglacial events in the James Ross Island region, northern Antarctic Peninsula, dated by Ar/Ar and Sr-isotope stratigraphy. Palaeogeography Palaeoclimatology Palaeoecology, 242, 169187.CrossRefGoogle Scholar
Tagami, T., Carter, A.Hurford, A.J. 1996. Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples: constraints upon the partial annealing zone and closure temperature. Chemical Geology, 130, 147157.CrossRefGoogle Scholar
Tagami, T., Galbraith, R.F., Yamada, R.Laslett, G.M. 1998. Revised annealing kinetics of fission tracks in zircon and geological implications. In Van den haute, P. & De Corte, F.,eds. Advances in fission-track geochronology. Kluwer Academic Publishers, 99112.CrossRefGoogle Scholar
Tagami, T., Lal, N., Sorkhabi, R.B., Ito, H.Nishimura, S. 1988. Fission track dating using external detector method: a laboratory procedure. Memoirs Faculty of Science, Kyoto University, Series Geology and Mineralogy, LIII, 130.Google Scholar
Vaughan, A.P.M., Wareham, C.D., Johnson, A.C.Kelley, S.P. 1998. A Lower Cretaceous, syn-extensional magmatic source for a linear belt of positive magnetic anomalies: the Pacific Margin Anomaly (PMA), western Palmer Land, Antarctica. Earth and Planetary Science Letters, 158, 143155.CrossRefGoogle Scholar
Vaughan, A.P.M.Livermore, R.A. 2005. Episodicity of Mesozoic terrane accretion along the Pacific margin of Gondwana: implications for superplume-plate interactions. In Vaughan, A.P.M., Leat P.T. & Pankhurst, R.J.,eds. Terrane processes at the margins of Gondwana. London: Geological Society, Special Publication, 246, 143178.Google Scholar
Vaughan, A.P.M.Storey, B.C. 2000. The eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula. Journal of the Geological Society, London, 157, 12431256.CrossRefGoogle Scholar
Wagner, G.A.Van den haute, P. 1992. Fission-track dating. Stuttgart: Ferdinand Enke Verlag, 285 pp.CrossRefGoogle Scholar
Whitham, A.G. 1993. Facies and depositional processes in an Upper Jurassic to Lower Cretaceous pelagic sedimentary sequence, Antarctica. Sedimentology, 40, 331349.CrossRefGoogle Scholar
Whitham, A.G.Doyle, P. 1989. Stratigraphy of the Upper Jurassic-Lower Cretaceous Nordenskjöld Formation of eastern Graham Land, Antarctica. Journal of South American Earth Sciences, 2, 371384.CrossRefGoogle Scholar
Whitham, A.G., Ineson, J.R.Pirrie, D. 2006. Marine volcaniclastics of the Hidden Lake Formation (Coniacian) of James Ross Island, Antarctica: an enigmatic element in the history of a back-arc basin. In Francis, J.E., et al., eds. Cretaceous-Tertiary High-Latitude Palaeoenvironments, James Ross Basin, Antarctica. Geological Society, London, Special Publications, 258, 2147.Google Scholar
Whitham, A.G.Marshall, J.E.A. 1988. Syn-depositional deformation in a Cretaceous succession, James Ross Island, Antarctica. Evidence from vitrinite reflectivity. Geological Magazine, 125, 583591.CrossRefGoogle Scholar
Yamada, R., Tagami, T.Nishimura, S. 1995a. Confined fission-track length measurement of zircon: assessment of factors affecting the paleotemperature estimate. Chemical Geology, 119, 293306.CrossRefGoogle Scholar
Yamada, R., Tagami, T., Nishimura, S.Ito, H. 1995b. Annealing kinetics of fission tracks in zircon: an experimental study. Chemical Geology, 122, 249258.CrossRefGoogle Scholar