Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T00:40:29.031Z Has data issue: false hasContentIssue false

The need to implement the Convention on Biological Diversity at the high latitude site, South Georgia

Published online by Cambridge University Press:  05 April 2011

D.K.A. Barnes*
Affiliation:
Biological Sciences, British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
M.A. Collins
Affiliation:
Government of South Georgia and South Sandwich Islands, Stanley, Falkland Islands
P. Brickle
Affiliation:
Shallow Marine Surveys Group, Stanley, Falkland Islands
P. Fretwell
Affiliation:
Biological Sciences, British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
H.J. Griffiths
Affiliation:
Biological Sciences, British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
D. Herbert
Affiliation:
Biological Sciences, British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
O.T. Hogg
Affiliation:
Biological Sciences, British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
C.J. Sands
Affiliation:
Biological Sciences, British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK

Abstract

The multilateral failure to apply the Convention on Biological Diversity (CBD) by the target year 2010 was headline news as are the accelerating climatic changes which dictate its urgency. Some ecosystems that are vulnerable to anthropogenic change have few species listed as endangered because too little is known about their biota. The highest vulnerability may correspond to where hotspots of species endemism, range limits and physiological sensitivity overlap with areas of most rapid physical change. The old, large and remote archipelago of South Georgia is one such location. Sea-surface temperatures around South Georgia are amongst the most rapidly warming reported. Furthermore oceanographic projections are highlighting the region as extremely vulnerable to ocean acidification. We outline the first polar Darwin Initiative project and the technical advances in generating an interactive and fully integrated georeferenced map of marine biodiversity, seabed topography and physical oceanography at South Georgia. Mapping marine mega and macro-faunal biodiversity onto multiple physical variables has rarely been attempted. This should provide a new tool in assessing the processes driving biological variability, the importance of marine areas in terms of ecosystem services, the threats and vulnerabilities of Polar Regions and should greatly aid implementation of the CBD.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnew, D.J. 2004. Fishing south - the history and management of South Georgia fisheries. St. Albans: Penna Press, 123 pp.Google Scholar
Allcock, A.L., Brierley, A.S., Thorpe, J.P.Rodhouse, P.G. 1997. Restricted gene flow and evolutionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Marine Biology, 129, 97102.CrossRefGoogle Scholar
Arntz, W.E., Brey, T.Gallardo, V.A. 1994. Antarctic zoobenthos. Oceanography and Marine Biology an Annual Review, 32, 241304.Google Scholar
Barnes, D.K.A. 2008. A benthic richness hotspot in the Southern Ocean: slope and shelf cryptic benthos of Shag Rocks. Antarctic Science, 20, 263270.CrossRefGoogle Scholar
Barnes, D.K.A., Griffiths, H.J.Kaiser, S. 2009a. Geographic range shift responses to climate change by Antarctic benthos: where we should look. Marine Ecology Progress Series, 393, 1326.CrossRefGoogle Scholar
Barnes, D.K.A., Peck, L.S.Morley, S. 2010. Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change. Global Change Biology, 11, 31643169.CrossRefGoogle Scholar
Barnes, D.K.A., Kaiser, S., Griffiths, H.J.Linse, K. 2009b. Marine, intertidal, freshwater and terrestrial biodiversity of an isolated polar archipelago. Journal of Biogeography, 36, 756769.CrossRefGoogle Scholar
Barnes, D.K.A., Fuentes, V., Clarke, A., Schloss, I.R.Wallace, M. 2006. Spatial and temporal variation in shallow seawater temperatures around Antarctica. Deep-Sea Research II, 53, 853865.CrossRefGoogle Scholar
Butchart, S.H.M., Walpole, M., Collen, B., van Strien, A., Scharleman, J.P.W., Almond, R.E.A., Baillie, J.E.M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K.E., Carr, G.M., Chanson, J., Chenery, A., Csirke, J., Davidson, N.C., Dentener, F., Foster, M., Galli, A., Galloway, J.N., Genovesi, P., Gregory, R., Hockings, M., Kapos, V., Lamarque, J.-F., Leverington, F., Loh, J., McGeoch, M.A., McRae, L., Minasyan, A., Hernández Morcillo, M., Oldfield, T., Pauly, D., Quader, S., Revenga, C., Sauer, J., Skolnik, B., Spear, D., Stanwell-Smith, D., Stuart, S.N., Symes, A., Tierney, M., Tyrrell, T.R., Vié, J.-C.Watson, R. 2010. Global biodiversity: indicators of recent declines. Science, 328, 11641168.CrossRefGoogle ScholarPubMed
Clarke, A.Johnston, N.M. 2003. Antarctic marine benthic diversity. Oceanography and Marine Biology an Annual Review, 41, 47114.Google Scholar
Collins, M.A., Brickle, M., Brown, J.Belchier, M. 2010. The Patagonian toothfish: biology, ecology and fishery. Advances in Marine Biology, 58, 227300.CrossRefGoogle ScholarPubMed
Collins, M.A., Xavier, J.C., Johnston, N.M., North, A.W., Enderlein, P., Tarling, G.A., Waluda, C.M., Hawker, E.Cunningham, N. 2008. Patterns in the distribution of myctophid fish in the northern Scotia Sea ecosystem. Polar Biology, 31, 837851.CrossRefGoogle Scholar
Compton, T.J., Rijkenberg, M.J.A., Crent, J.Piersma, T. 2007. Thermal tolerance and climate variability: a comparison between bivalves from differing climates. Journal of Experimental Marine Biology and Ecology, 352, 200211.CrossRefGoogle Scholar
Cook, A.J., Fox, A.J., Vaughan, D.G.Ferrigno, J.G. 2005. Retreating glacier fronts on the Antarctic peninsula over the past half-century. Science, 308, 541544.CrossRefGoogle ScholarPubMed
Forcada, J.Trathan, P. 2009. Penguin responses to climate change in the Southern Ocean. Global Change Biology, 15, 16181630.CrossRefGoogle Scholar
Gon, O.Heemstra, P.C. 1990. Fishes of the Southern Ocean. Grahamstown, SA: JLB Smith Institute of Ichthyology, 462 pp.CrossRefGoogle Scholar
Graham, A.G.C., Fretwell, P.T., Larter, R.D., Hodgson, D.A., Wilson, C.K., Tate, A.J.Morris, P. 2008. A new bathymetric compilation highlighting extensive paleo-ice sheet drainage on the continental shelf, South Georgia, sub-Antarctica. Geochemistry, Geophysics, Geosystems, 9, 10.1029/2008GC001993.CrossRefGoogle Scholar
Griffiths, H.J., Barnes, D.K.A.Linse, K. 2009. Towards a generalised biogeography of Southern Ocean benthos. Journal of Biogeography, 36, 162177.CrossRefGoogle Scholar
Hofmann, E.E., Klinck, J.M., Locarnini, R.A., Fach, B.A.Murphy, E.J. 1998. Krill transport in the Scotia Sea and environs. Antarctic Science, 10, 406415.CrossRefGoogle Scholar
Hunter, R.L.Halanych, K.M. 2008. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. Journal of Heredity, 99, 137148.CrossRefGoogle ScholarPubMed
Jackson, J.B.C., Kirby, M.X., Berger, W.H., Bjorndal, K.A., Botsford, L.W., Bourque, B.J., Bradbury, R.H., Cooke, R., Erlandson, J., Estes, J.A., Hughes, T.P., Kidwell, S., Lange, C.B., Lenihan, H.S., Pandolfi, J.M., Peterson, C.H., Steneck, R.S., Tegner, M.J.Warner, R.R. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629638.CrossRefGoogle ScholarPubMed
Lewis, P.N., Riddle, M.J.Smith, S.D.A. 2005. Assisted passage or passive drift: a comparison of alternate transport mechanisms for non-indigenous marine organisms into the Southern Ocean. Antarctic Science, 17, 183191.CrossRefGoogle Scholar
Linse, K., Cope, T., Loerz, A.-N.Sands, C. 2007. Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae). Polar Biology, 30, 10591068.CrossRefGoogle Scholar
Longhurst, A. 1998. Ecological geography of the sea. San Diego, CA: Academic Press, 398 pp.Google Scholar
Meredith, M.P.King, J.C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysics Research Letters, 32, 10.1029/2005GL024042.CrossRefGoogle Scholar
Morley, S.A., Hirse, T., Pörtner, H.O.Peck, L.S. 2009. Geographic variation in thermal tolerance within Southern Ocean marine ectotherms. Comparative Biochemistry and Physiology A, 153, 154161.CrossRefGoogle ScholarPubMed
Nikula, R., Fraser, C.I., Spencer, H.G.Waters, J.M. 2010. Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Marine Ecology Progress Series, 405, 221230.CrossRefGoogle Scholar
Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G.-K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.-F., Yamanaka, Y.Yool, A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681686.CrossRefGoogle ScholarPubMed
Parry, M.L, Canziani, O.F., Palutikof, J.P., Van Der Linden, P.J.Hanson, C.E., eds. 2007. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 982 pp.Google Scholar
Peck, L.S., Barnes, D.K.A., Cook, A., Fleming, A.Clarke, A. 2010. Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Global Change Biology, 16, 26142623.CrossRefGoogle Scholar
Primo, C.Vázquez, E. 2007. Zoogeography of the Antarctic ascidian fauna in relation to the sub-Antarctic and South America. Antarctic Science, 19, 321336.CrossRefGoogle Scholar
Rayfuse, R. 2008. Protecting marine biodiversity in polar areas beyond national jurisdiction. Review of European Community & International Environmental Law, 17, 313.CrossRefGoogle Scholar
Rodríguez, E., Daly, M.Fautin, D.G. 2007. Order Actiniaria. Zootaxa, 1668, 131138.Google Scholar
Shaw, P.W., Arkhipkin, A.I.Al-Khairulla, H. 2004. Genetic structuring of Patagonian toothfish populations in the southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep water troughs as barriers to genetic exchange. Molecular Ecology, 13, 32933303.CrossRefGoogle ScholarPubMed
Stammerjohn, S.E., Martinson, D.G., Smith, R.C.Iannuzzi, R.A. 2008. Sea ice in the western Antarctic Peninsula region: spatio-temporal variability from ecological and climate change perspectives. Deep-Sea Research II, 55, 20412058.CrossRefGoogle Scholar
Thomas, H., Prowe, F., Lima, I.D., Doney, S.C., Wanninkhof, R., Greatbatch, R.J., Schuster, U.Corbière, A. 2008. Changes in the North Atlantic Oscillation influence CO2 uptake in the North Atlantic over the past 2 decades. Global Biogeochemistry Cycles, 113. 10.1029/2007GB003167.Google Scholar
Thornhill, D., Mahan, A.R., Norenburg, J.Halanych, K.M. 2008. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Molecular Ecology, 17, 51045117.CrossRefGoogle ScholarPubMed
Trathan, P.N., Brandon, M.A.Murphy, E.J. 1997. Characterization of the Antarctic Polar Frontal Zone to the north of South Georgia in summer 1994. Journal of Geophysical Research, 102, 10 48310 497.CrossRefGoogle Scholar
Trathan, P.N., Murphy, E.J., Forcada, J., Croxall, J.P., Reid, K.Thorpe, S.E. 2006. Physical forcing in the southwest Atlantic: ecosystem control. In Boyd, I.L., Wanless, S. & Camphuysen, C.J., eds. Top predators in marine ecosystems: their role in monitoring and management. Cambridge: Cambridge University Press, 2845.CrossRefGoogle Scholar
Trathan, P.N., Brierley, A.S., Brandon, M.A., Bone, D.G., Goss, C., Grant, S.A., Murphy, E.J.Watkins, J.L. 2003. Oceanographic variability and changes in Antarctic krill (Euphausia superba) abundance at South Georgia. Fisheries Oceanography, 12, 569583.CrossRefGoogle Scholar
Trenberth, K.E.Hoar, T.J. 1996. El Niño and climate change. Geophysical Research Letters, 24, 30573060.CrossRefGoogle Scholar
Turner, J., Bindschadler, R.A., Convey, P., Di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D.A., Mayewski, P.A.Summerhayes, C.P., eds. 2009. Antarctic climate change and the environment. Cambridge: SCAR, 554 pp.Google Scholar
Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., Hoegh-Guldberg, O.Bairlein, F. 2002. Ecological responses to recent climate change. Nature, 416, 389395.CrossRefGoogle ScholarPubMed
Whitehouse, M.J., Meredith, M.P., Rothery, P., Atkinson, A., Ward, P.Korb, R.E. 2008. Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: forcings, characteristics and implications for lower trophic levels. Deep-Sea Research I, 55, 12181228.CrossRefGoogle Scholar
Wilson, N., Hunter, R., Lockhart, S.Halanych, K. 2007. Multiple lineages and absence of panmixia in the “circumpolar$#x201D; crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Marine Biology, 152, 895904.CrossRefGoogle Scholar
Young, E.F., Meredith, M.P., Murphy, E.J.Carvalho, G.R. 2009. High-resolution modelling of the shelf and open ocean adjacent to South Georgia, Southern Ocean. Deep-Sea Research II, 10.1016/j.dsr2.2009.11.003.Google Scholar