Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T07:08:19.870Z Has data issue: false hasContentIssue false

A Holocene moss species preserved in lake sediment core and the present moss diversity at Schirmacher Oasis, Antarctica

Published online by Cambridge University Press:  03 April 2012

S.M. Singh*
Affiliation:
National Centre for Antarctic and Ocean Research, Vasco-Da-Gama, Goa 403804, India
R. Ochyra
Affiliation:
Institute of Botany, Polish Academy of Sciences, Kraków 31 512, Poland
S.M. Pednekar
Affiliation:
National Centre for Antarctic and Ocean Research, Vasco-Da-Gama, Goa 403804, India
R. Asthana
Affiliation:
Antarctica Division, Geological Survey of India, Faridabad 121001, India
R. Ravindra
Affiliation:
National Centre for Antarctic and Ocean Research, Vasco-Da-Gama, Goa 403804, India

Abstract

The sub-fossil moss Pohlia nutans is recorded from lake sediment cores at Schirmacher Oasis, Dronning Maud Land, Antarctica. It was isolated from 160–162 cm depth of a sediment core. Radiocarbon (14C) dates by accelerator mass spectrometry confirmed its age to be 10.65 kyr bp. The preserved Holocene sub-fossil moss includes delicate leaves, axes and rhizoids and matches perfectly the extant specimens of P. nutans. This is the first record of this sub-fossil from Dronning Maud Land, although the species is common as present-day flora in other parts of the Antarctic. The present status of the moss flora of Schirmacher Oasis is also discussed, including its diversity, ecology and biogeography.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, M.P.Kurbatova, L.E. 2009. New data on lichens and bryophytes of the Pacific Antarctic. Novosti Sistematiki Nizšikh Rasteniy, 42, 142152. [In Russian].CrossRefGoogle Scholar
Birkenmajer, K., Ochyra, R., Olsson, I.U.Stuchlik, L. 1985. Mid-Holocene radiocarbon-dated peat at Admiralty Bay, King George Island (South Shetland Islands, West Antarctica). Bulletin of the Polish Academy of Sciences, Earth Sciences, 33, 713.Google Scholar
Convey, P., Bindschadler, R., di Prisco, G., Fahrbach, E., Gutt, J., Hodgson, D.A., Mayewski, P.A., Summerhayes, C.P., Turner, J.& The ACCE Consortium 2009a. Antarctic climate change and the environment. Antarctic Science, 21, 541563.CrossRefGoogle Scholar
Convey, P., Stevens, M.I., Hodgson, D.A., Smellie, J.L., Hillenbrand, C-D., David, K.A., Barnes, D.K.A., Clarke, A., Pugh, P.J.A., Linse, K.Cary, S.C. 2009b. Exploring biological constraints on the glacial history of Antarctica. Quaternary Science Reviews, 28, 30353048.CrossRefGoogle Scholar
Deshpande, D.D.Tripathy, R.N. 2010. Meteorological studies carried out at Schirmacher Oasis, Antarctica during 23rd Indian Antarctic Expedition 2003–2005. Indian Ministry of Earth Sciences, Technical Publication, 21, 2347.Google Scholar
Fenton, J.H.C.Smith, R.I.L. 1982. Distribution, composition and general characteristics of the moss banks of the Maritime Antarctic. British Antarctic Survey Bulletin, No. 51, 215236.Google Scholar
Galloway, D. 1991. Phytogeography of Southern Hemisphere lichens. In Nimis, P.L., Crovello, T.J., eds. Quantitative approaches to phytogeography. Dordrecht: Kluwer, 233262.CrossRefGoogle Scholar
Green, T.G.A., Sancho, L.G., Türk, R., Seppelt, R.D.Hogg, I.D. 2011. High diversity of lichens at 84°, Queen Maud Mountains, suggest pre-glacial survival of species in the Ross Sea region, Antarctica. Polar Biology, 34, 12111220.CrossRefGoogle Scholar
Hertel, H. 1987. Progress and problems in taxonomy of Antarctic saxicolous lecideoid lichens. Bibliotheca Lichenologica, 25, 219242.Google Scholar
Hodgson, D.A., Noon, P.E., Vyverman, W., Bryant, C.L., Gore, D.B., Appleby, P., Gilmour, M., Verleyen, E., Sabbe, K., Jones, V.J., Ellis-Evans, J.C.Wood, P.B. 2001. Were the Larsemann Hills ice-free through the Last Glacial Maximum? Antarctic Science, 13, 440454.CrossRefGoogle Scholar
Imura, S., Bando, T., Saito, S., Seto, K.Kanda, H. 1999. Benthic moss pillars in Antarctic lakes. Polar Biology, 22, 137140.CrossRefGoogle Scholar
Imura, S., Bando, T., Seto, K., Ohtani, S., Kudoh, S.Kanda, H. 2003. Distribution of aquatic mosses in the Sôya Coast region, East Antarctica. Polar Biosciences, 16, 110.Google Scholar
Ingólfsson, Ó., Hjort, C., Berkman, P., Björck, S., Colhoun, E., Goodwin, I.D., Hall, B., Hirakawa, K., Melles, M., Möller, P.Prentice, M. 1998. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarctic Science, 10, 326344.CrossRefGoogle Scholar
Jones, V.J., Hodgson, D.A.Chepstow-Lusty, A. 2000. Palaeolimnological evidence for marked Holocene environmental changes on Signy Island, Antarctica. The Holocene, 10, 4360.CrossRefGoogle Scholar
Jonsgard, B.Birks, H.H. 1995. Late-glacial mosses and environmental reconstructions at Krakenes, western Norway. Lindbergia, 20, 6482.Google Scholar
Krause, W.E., Krbetschek, M.R.Stolz, W. 1997. Dating of Quaternary lake sediments from the Schirmacher Oasis (East Antarctica) by infrared stimulated luminescence (IRSL) detected at the wavelength of 560 nm. Quaternary Science Reviews, 16, 387392.CrossRefGoogle Scholar
Kurbatova, L.E.Ochyra, R. 2012. Two noteworthy additions to the moss flora of the Schirmacher Oasis in the continental Antarctic. Cryptogamie Bryologie, 33.CrossRefGoogle Scholar
Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hedenäs, L., Hemming, S.R., Johnson, J.V., Leng, M.J., Machlus, M.L., Newton, A.E., Raine, J.I., Willenbring, J.K., Williams, M.Wolfe, A.P. 2008. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences of the Unites States of America, 105, 10 67610 680.CrossRefGoogle ScholarPubMed
Li, S.-P, Ochyra, R., Wu, P.-C., Seppelt, R.D., Cai, M.-H, Wang, H.-Y.Li, C.-S. 2009. Drepanocladus longifolius (Amblystegiaceae), an addition to the moss flora of King George Island, South Shetland Islands, with a review of Antarctic benthic mosses. Polar Biology, 32, 14151425.CrossRefGoogle Scholar
Muñoz, J., Felicisimo, A.M., Cabezas, F., Burgaz, A.R.Martinez, I. 2004. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science, 304, 11441147.CrossRefGoogle ScholarPubMed
Longton, R.E. 1988. The biology of polar bryophytes and lichens. Cambridge: Cambridge University Press, 391 pp.CrossRefGoogle Scholar
Ochyra, R. 1998. The moss flora of King George Island, Antarctica. Cracow, Poland: Polish Academy of Sciences, 279 pp.Google Scholar
Ochyra, R.Buck, W.R. 2003. Arctoa fulvella, new to Tierra del Fuego, with notes on trans-American bipolar bryogeography. The Bryologist, 106, 532538.CrossRefGoogle Scholar
Ochyra, R.Singh, S.M. 2008. Three remarkable moss records from Dronning Maud Land, continental Antarctica. Nova Hedwigia, 86, 497506.CrossRefGoogle Scholar
Ochyra, R., Bednarek-Ochyra, H.Smith, R.I.L. 1998. 170 years of research of the Antarctic moss flora. Polish Polar Studies 25th International Polar Symposium. Warsaw: Institute of Geophysics of the Polish Academy of Sciences, 159–177.Google Scholar
Ochyra, R., Bednarek-Ochyra, H.Smith, R.I.L. 2008a. New and rare moss species from the Antarctic. Nova Hedwigia, 87, 457477.CrossRefGoogle Scholar
Ochyra, R., Lewis Smith, R.I.Bednarek-Ochyra, H. 2008b. The illustrated moss flora of Antarctica. Cambridge: Cambridge University Press, xvii + 685 pp.Google Scholar
Peat, H.J., Clarke, A.Convey, P. 2007. Diversity and biogeography of the Antarctic flora. Journal of Biogeography, 34, 132146.CrossRefGoogle Scholar
Priddle, J.Belcher, J.H. 1982. An annotated list of benthic algae (excluding diatoms) from freshwater lakes of Signy Island. British Antarctic Survey Bulletin, No. 57, 4153.Google Scholar
Savicz-Lyubitskaya, L.I.Smirnova, Z.N. 1972. Bryum algens Card. - the most widespread moss in East Antarctica. Trudy Sovetskoy Antarkticheskoy Ekspeditsiy, 60, 328345. [In Russian].Google Scholar
Seppelt, R.D.Selkirk, P.M. 1984. Effects of submersion on morphology and the implications of induced environmental modification on the taxonomic interpretation of selected Antarctic moss species. Journal of the Hattori Botanical Laboratory, 55, 273279.Google Scholar
Singh, S.M., Sharma, J., Singh, P.Ravindra, R. 2008. Plant community and nutrient status of the soils of Schirmacher Oasis, East Antarctica. Chinese Journal of Polar Sciences, 19, 6376.Google Scholar
Smoot, E.L.Taylor, T.N. 1986. Structurally preserved fossil plants from Antarctica: II. A Permian moss from the Transantarctic Mountains. American Journal of Botany, 73, 16831691.CrossRefGoogle Scholar
Squier, A.H., Hodgson, D.A.Keeley, B.J. 2005. Evidence of late Quaternary environmental change in a continental East Antarctic lake for lacustrine sedimentary pigment distributions. Antarctic Science, 17, 361376.CrossRefGoogle Scholar
Smith, R.I.L. 1991. Exotic sporomorpha as indicators of immigrant colonists in Antarctica. Grana, 30, 313324.CrossRefGoogle Scholar
Tatur, A., del Valle, R., Barczuk, A.Martinez-Macchiavello, J. 2004. Records of Holocene environmental changes in terrestrial sedimentary deposits on King George Island, Antarctica: a critical review. Ocean Polar Research, 26, 531537.CrossRefGoogle Scholar
Van der Putten, N., Stieperaere, H., Verbruggen, C.Ochyra, R. 2004. Holocene palaeoecology and climate history of South Georgia (sub-Antarctica) based on a macrofossil record of bryophytes and seeds. The Holocene, 14, 382392.CrossRefGoogle Scholar
Van der Putten, N., Verbruggen, C., Ochyra, R., Verleyen, E.Frenot, Y. 2010. Sub-Antarctic flowering plants: pre-glacial survivors or post-glacial immigrants? Journal of Biogeography, 37, 582592.CrossRefGoogle Scholar
Van der Putten, N., Verbruggen, C., Ochyra, R., Spassov, S., de Beaulieu, J.-L., De Dapper, M., Hus, J.Thouveny, N. 2009. Peat bank growth, Holocene palaeoecology and climate history of South Georgia (sub-Antarctica), based on a botanical macrofossil record. Quaternary Science Reviews, 28, 6579.CrossRefGoogle Scholar
Vera, E.I. 2011. Livingstonites gabrielae gen. et sp. nov., permineralized moss (Bryophyta: Bryopsida) from the Aptian Cerro Negro Formation of Livingston Island (South Shetland Islands, Antarctica). Ameghiniana, 48, 122128.CrossRefGoogle Scholar