Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T01:56:22.252Z Has data issue: false hasContentIssue false

Habitat selection of southern giant petrels: potential environmental monitors of the Antarctic Peninsula

Published online by Cambridge University Press:  31 August 2023

Júlia Victória Grohmann Finger*
Affiliation:
Laboratório de Ornitologia e Animais Marinhos, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, São Leopoldo, CEP 93900-000, Brazil
Lucas Krüger
Affiliation:
Instituto Antártico Chileno, Plaza Muñoz Gamero, 1055, Punta Arenas, Chile Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, Chile
Denyelle Hennayra Corá
Affiliation:
Laboratório de Ornitologia e Animais Marinhos, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, São Leopoldo, CEP 93900-000, Brazil
Maria Virginia Petry
Affiliation:
Laboratório de Ornitologia e Animais Marinhos, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, São Leopoldo, CEP 93900-000, Brazil

Abstract

The southern giant petrel (Macronectes giganteus) is a widely distributed top predator of the Southern Ocean. To define the fine-scale foraging areas and habitat use of Antarctic breeding populations, 47 southern giant petrels from Nelson Island were GPS-tracked during the summers of 2019–2020 and 2021–2022. Step-selection analysis was applied to test the effects of environmental variables on habitat selection. Visual overlap with seal haul-out sites and fishing areas was also analysed. Birds primarily used waters to the south of the colony in the Weddell and Bellingshausen seas. Females showed a broader distribution, reaching up to -70°S to the west of Nelson Island, while males were mainly concentrated in waters off the northern Antarctic Peninsula. Habitat selection of both sexes was associated with water depth and proximity to penguin colonies. Both overlapped their foraging areas with fishing sites and females in particular overlapped with toothfish fishery blocks in Antarctica and with fishing areas in the Patagonian Shelf. Due to their habitat associations and overlap with fisheries, when harnessed with tracking devices and animal-borne cameras, giant petrels can act as platforms for monitoring the condition and occurrence of penguin colonies, haul-out sites and unregulated fisheries on various temporal and spatial scales in Antarctica.

Type
Biological Sciences
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, A., Hill, S.L., Pakhomov, E.A., Siegel, V., Reiss, C.S., Loeb, V.J., et al. 2019. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nature Climate Change, 9, 10.1038/s41558-018-0370-z.CrossRefGoogle Scholar
Bargagli, R. 2008. Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400, 10.1016/j.scitotenv.2008.06.062.CrossRefGoogle ScholarPubMed
Barnett, A.H. & Moorcroft, P.R. 2007. Analytic steady-state space use patterns and rapid computations in mechanistic home range analysis. Journal of Mathematical Biology, 57, 10.1007/S00285-007-0149-8.Google ScholarPubMed
Baylis, A.M.M., Crofts, S. & Wolfaardt, A.C. 2013a. Population trends of gentoo penguins Pygoscelis papua breeding at the Falkland Islands. Marine Ornithology, 41, 15.Google Scholar
Baylis, A.M.M., Wolfaardt, A.C., Crofts, S., Pistorius, P.A. & Ratcliffe, N. 2013b. Increasing trend in the number of southern rockhopper penguins (Eudyptes c. chrysocome) breeding at the Falkland Islands. Polar Biology, 36, 10.1007/S00300-013-1324-6/FIGURES/5.CrossRefGoogle Scholar
Beal, M., Oppel, S., Handley, J., Pearmain, E.J., Morera-Pujol, V., Carneiro, A.P.B., et al. 2021. track2KBA: an R package for identifying important sites for biodiversity from tracking data. Methods in Ecology and Evolution, 12, 10.1111/2041-210X.13713.CrossRefGoogle Scholar
Bender, N.A., Crosbie, K. & Lynch, H.J. 2016. Patterns of tourism in the Antarctic Peninsula region: a 20-year analysis. Antarctic Science, 28, 10.1017/S0954102016000031.CrossRefGoogle Scholar
Borowicz, A., Mcdowall, P., Youngflesh, C., Sayre-mccord, T., Clucas, G. & Herman, R. 2018. Multi-modal survey of Adélie penguin mega-colonies reveals the Danger Islands as a seabird hotspot. Scientific Reports, 8, 10.1038/s41598-018-22313-w.CrossRefGoogle ScholarPubMed
Brooks, M.E., Kristensen, K., Van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., et al. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9, 378400.CrossRefGoogle Scholar
Carpenter-Kling, T., Handley, J.M., Connan, M., Crawford, R.J.M., Makhado, A.B., Dyer, B.M., et al. 2019. Gentoo penguins as sentinels of climate change at the sub-Antarctic Prince Edward Archipelago, Southern Ocean. Ecological Indicators, 101, 10.1016/J.ECOLIND.2019.01.008.CrossRefGoogle Scholar
Chown, S.L., Lee, J.E., Hughes, K.A., Barnes, J., Barrett, P.J., Bergstrom, D.M., et al. 2012. Challenges to the future conservation of the Antarctic. Science, 337, 10.1126/science.1222821.CrossRefGoogle Scholar
Clay, T.A., Small, C., Tuck, G.N., Pardo, D., Carneiro, A.P.B., Wood, A.G., et al. 2019. A comprehensive large-scale assessment of fisheries bycatch risk to threatened seabird populations. Journal of Applied Ecology, 56, 10.1111/1365-2664.13407.CrossRefGoogle Scholar
Collins, M.A., Hollyman, P.R., Clark, J., Soeffker, M., Yates, O. & Phillips, R.A. 2021. Mitigating the impact of longline fisheries on seabirds: lessons learned from the South Georgia Patagonian toothfish fishery (CCAMLR Subarea 48.3). Marine Policy, 131, 10.1016/J.MARPOL.2021.104618.CrossRefGoogle Scholar
Convey, P. & Peck, L.S. 2019. Antarctic environmental change and biological responses. Science Advances, 5, 10.1126/sciadv.aaz0888.CrossRefGoogle ScholarPubMed
Conroy, J.W.H. 1972. Ecological aspects of the biology of the giant petrel, Macronectes giganteus (Gmelin), in the Maritime Antarctic. BAS Scientific Reports, 75, 174.Google Scholar
Copello, S., Dogliotti, A.I., Gagliardini, D.A. & Quintana, F. 2011. Oceanographic and biological landscapes used by the southern Giant Petrel during the breeding season at the Patagonian Shelf. Marine Biology, 158, 10.1007/s00227-011-1645-3.CrossRefGoogle Scholar
Corá, D.H., Finger, J.V.G. & Krüger, L. 2020. Coprophagic behaviour of southern giant petrels (Macronectes giganteus) during breeding period. Polar Biology, 43, 10.1007/s00300-020-02757-5.CrossRefGoogle Scholar
Dilley, B.J., Davies, D., Connan, M., Cooper, J., De Villiers, M., Swart, L., et al. 2013. Giant petrels as predators of albatross chicks. Polar Biology, 36, 10.1007/s00300-013-1300-1.CrossRefGoogle Scholar
Dorschel, B., Hehemann, L., Viquerat, S., Warnke, F., Dreutter, S., Schulze Tenberge, Y., et al. 2022: The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2). PANGAEA. Retrieved from https://doi.org/10.1594/PANGAEA.937574.CrossRefGoogle Scholar
Fedak, M.A. 2013. The impact of animal platforms on polar ocean observation. Deep-Sea Research II: Topical Studies in Oceanography, 88–89, 10.1016/j.dsr2.2012.07.007.Google Scholar
Finger, J.V.G., Corá, D.H., Convey, P., Cruz, F.S., Petry, M.V. & Krüger, L. 2021. Anthropogenic debris in an Antarctic Specially Protected Area in the Maritime Antarctic. Marine Pollution Bulletin, 172, 10.1016/j.marpolbul.2021.112921.CrossRefGoogle Scholar
Ford, R.G. & Krumme, D.W. 1979. The analysis of space use patterns. Journal of Theoretical Biology, 76, 10.1016/0022-5193(79)90366-7.CrossRefGoogle ScholarPubMed
Forero, M.G., González-Solís, J., Hobson, K.A., Donázar, J.A., Bertellotti, M., Blanco, G. & Bortolotti, G.R. 2005. Stable isotopes reveal trophic segregation by sex and age in the southern giant petrel in two different food webs. Marine Ecology Progress Series, 296, 10.3354/meps296107.CrossRefGoogle Scholar
Fretwell, P.T. & Trathan, P.N. 2021. Discovery of new colonies by Sentinel2 reveals good and bad news for emperor penguins. Remote Sensing in Ecology and Conservation, 7, 10.1002/rse2.176.CrossRefGoogle Scholar
Garriga, J. & Bartumeus, F. 2016. The EMbC R-package: quick reference. Retrieved from https://cran.r-project.org/web/packages/EMbC/vignettes/EMbC_qckref.pdf.Google Scholar
Gerrish, L., Fretwell, P., & Cooper, P. 2021. High resolution vector polygons of the Antarctic coastline (Version 7.4) [Data set]. NERC EDS UK Polar Data Centre. Retrieved from 10.5285/cdeb448d-10de-4e6e-b56b-6a16f7c59095.Google Scholar
Gianuca, D., Phillips, R.A., Townley, S. & Votier, S.C. 2017. Global patterns of sex- and age-specific variation in seabird bycatch. Biological Conservation, 205, 10.1016/j.biocon.2016.11.028.CrossRefGoogle Scholar
Gianuca, D., Votier, S.C., Pardo, D., Wood, A.G., Sherley, R.B., Ireland, L., et al. 2019. Sex-specific effects of fisheries and climate on the demography of sexually dimorphic seabirds. Journal of Animal Ecology, 88, 10.1111/1365-2656.13009.CrossRefGoogle ScholarPubMed
González-Solís, J. 2004. Sexual size dimorphism in northern giant petrels: ecological correlates and scaling. OIKOS, 105, 247254.CrossRefGoogle Scholar
González-Solís, J., Croxall, J.P. & Afanasyev, V. 2008. Offshore spatial segregation in giant petrels Macronectes spp.: differences between species, sexes and seasons. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, 10.1002/aqc.911.Google Scholar
Granroth-Wilding, H.M.V. & Phillips, R.A. 2019. Segregation in space and time explains the coexistence of two sympatric sub-Antarctic petrels. Ibis, 161, 10.1111/ibi.12584.CrossRefGoogle Scholar
Grémillet, D., Ponchon, A., Paleczny, M., Palomares, M.-L.D., Karpouzi, V. & Pauly, D. 2018. Persisting worldwide seabird-fishery competition despite seabird community decline. Current Biology, 28, 10.1016/j.cub.2018.10.051.CrossRefGoogle ScholarPubMed
Grohmann Finger, J.V., Corá, D.H., Petry, M.V. & Krüger, L. 2021. Cannibalism in southern giant petrels (Macronectes giganteus) at Nelson Island, Maritime Antarctic Peninsula. Polar Biology, 44, 10.1007/s00300-021-02859-8.CrossRefGoogle Scholar
Hanchet, S., Sainsbury, K., Butterworth, D., Darby, C., Bizikov, V., Rune Godø, O., et al. 2015. CCAMLR's precautionary approach to management focusing on Ross Sea toothfish fishery. Antarctic Science, 27, 10.1017/S095410201400087X.CrossRefGoogle Scholar
Hazen, E.L., Abrahms, B., Brodie, S., Carroll, G., Jacox, M.G., Savoca, M.S., et al. 2019. Marine top predators as climate and ecosystem sentinels. Frontiers in Ecology and the Environment, 17, 10.1002/fee.2125.CrossRefGoogle Scholar
Hijmans, R.J. & Van Etten, J. 2021. raster: geographic data analysis and modeling. R package version 3.4-13. Retrieved from https://CRANR-projectorg/package=raster.Google Scholar
Hindell, M.A., Reisinger, R.R., Ropert-Coudert, Y., Hückstädt, L.A., Trathan, P.N., Bornemann, H., et al. 2020. Tracking of marine predators to protect Southern Ocean ecosystems. Nature, 580, 10.1038/s41586-020-2126-y.CrossRefGoogle ScholarPubMed
Humphries, G.R.W., Naveen, R., Schwaller, M., Che-Castaldo, C., McDowall, P., Schrimpf, M. & Lynch, H.J. 2017. Mapping Application for Penguin Populations and Projected Dynamics (MAPPPD): data and tools for dynamic management and decision support. Polar Record, 53, 10.1017/S0032247417000055CrossRefGoogle Scholar
Hunter, S. 1983. The food and feeding ecology of the giant petrels Macronectes halli and M. giganteus at South Georgia. Journal of Zoology, 200, 10.1111/j.1469-7998.1983.tb02813.x.CrossRefGoogle Scholar
Hunter, S. 1984. Breeding biology and population dynamics of giant petrels Macronectes at South Georgia (Aves: Procellariiformes). Journal of Zoology, 203, 10.1111/j.1469-7998.1984.tb02343.x.CrossRefGoogle Scholar
Hunter, S. 1985. The role of giant petrels in the Southern Ocean ecosystem. In Siegfried, W.R., Condy, P.R. & Laws, R.M., eds, Antarctic nutrient cycles and food webs. Berlin: Springer, 534542.CrossRefGoogle Scholar
Jenouvrier, S., Che-Castaldo, J., Wolf, S., Holland, M., Labrousse, S., LaRue, M., et al. 2021. The call of the emperor penguin: legal responses to species threatened by climate change. Global Change Biology, 27, 10.1111/gcb.15806.CrossRefGoogle ScholarPubMed
Jiménez, S., Domingo, A., Abreu, M. & Brazeiro, A. 2011. Structure of the seabird assemblage associated with pelagic longline vessels in the southwestern Atlantic: implications for bycatch. Endangered Species Research, 15, 10.3354/ESR00378.CrossRefGoogle Scholar
Kim, S.U. & Kim, K.Y. 2021. Impact of climate change on the primary production and related biogeochemical cycles in the coastal and sea ice zone of the Southern Ocean. Science of the Total Environment, 751, 10.1016/j.scitotenv.2020.141678.CrossRefGoogle ScholarPubMed
Krüger, L. 2019a. An update on the southern giant petrels Macronectes giganteus breeding at Harmony Point, Nelson Island, Maritime Antarctic Peninsula. Polar Biology, 42, 10.1007/s00300-019-02504-5.CrossRefGoogle Scholar
Krüger, L. 2019b. Spatio-temporal trends of the krill fisheries in the western Antarctic Peninsula and southern Scotia Arc. Fisheries Management and Ecology, 26, 10.1111/fme.12363.CrossRefGoogle Scholar
Krüger, L. 2022. Identifying and establishing Marine Protected Areas worldwide: the contribution of seabird data. In Ramos, J.A. & Pereira, L., eds, Seabird biodiversity and human activities, 1st edition. Boca Raton, FL: CRC Press, 243257.CrossRefGoogle Scholar
Krüger, L., Huerta, M.F., Santa Cruz, F. & Cárdenas, C.A. 2021. Antarctic krill fishery effects over penguin populations under adverse climate conditions: implications for the management of fishing practices. Ambio, 50, 10.1007/s13280-020-01386-w.CrossRefGoogle ScholarPubMed
Krüger, L., Paiva, V.H., Petry, M.V. & Ramos, J.A. 2017. Seabird breeding population size on the Antarctic Peninsula related to fisheries activities in non-breeding ranges off South America. Antarctic Science, 29, 10.1017/S0954102017000207.CrossRefGoogle Scholar
Krüger, L., Paiva, V.H., Finger, J.V.G., Petersen, E., Xavier, J.C., Petry, M.V. & Ramos, J.A. 2018. Intra-population variability of the non-breeding distribution of southern giant petrels Macronectes giganteus is mediated by individual body size. Antarctic Science, 30, 10.1017/S0954102018000238.CrossRefGoogle Scholar
LaRue, M.A., Rotella, J.J., Garrott, R.A., Siniff, D.B., Ainley, D.G., Stauffer, G.E., et al. 2011. Satellite imagery can be used to detect variation in abundance of Weddell seals (Leptonychotes weddellii) in Erebus Bay, Antarctica. Polar Biology, 34, 10.1007/s00300-011-1023-0.CrossRefGoogle Scholar
Lascelles, B.G., Langham, G.M., Ronconi, R.A. & Reid, J.B. 2012. From hotspots to site protection: identifying Marine Protected Areas for seabirds around the globe. Biological Conservation, 156, 10.1016/j.biocon.2011.12.008.CrossRefGoogle Scholar
Lascelles, B.G., Taylor, P.R., Miller, M.G.R., Dias, M.P., Oppel, S., Torres, L., et al. 2016. Applying global criteria to tracking data to define important areas for marine conservation. Diversity and Distributions, 22, 10.1111/ddi.12411.CrossRefGoogle Scholar
Le Bohec, C., Gauthier-Clerc, M., Gendner, J.P., Chatelain, N. & Le Maho, Y. 2003. Nocturnal predation of king penguins by giant petrels on the Crozet Islands. Polar Biology, 26, 10.1007/s00300-003-0523-y.CrossRefGoogle Scholar
Lee, J.R., Raymond, B., Bracegirdle, T.J., Chadès, I., Fuller, R.A., Shaw, J.D. & Terauds, A. 2017. Climate change drives expansion of Antarctic ice-free habitat. Nature, 547, 10.1038/nature22996.CrossRefGoogle ScholarPubMed
Lynch, H.J., Fagan, W.F., Naveen, R., Trivelpiece, S.G. & Trivelpiece, W.Z. 2012. Differential advancement of breeding phenology in response to climate may alter staggered breeding among sympatric pygoscelid penguins. Marine Ecology Progress Series, 454, 135145.CrossRefGoogle Scholar
Lynnes, A.S., Reid, K. & Croxall, J.P. 2004. Diet and reproductive success of Adélie and chinstrap penguins: linking response of predators to prey population dynamics. Polar Biology, 27, 10.1007/s00300-004-0617-1.CrossRefGoogle Scholar
Miller, A.K. & Trivelpiece, W.Z. 2008. Chinstrap penguins alter foraging and diving behavior in response to the size of their principle prey, Antarctic krill. Marine Biology, 154, 10.1007/s00227-008-0909-z.CrossRefGoogle Scholar
Muff, S., Signer, J. & Fieberg, J. 2020. Accounting for individual-specific variation in habitat-selection studies: efficient estimation of mixed-effects models using Bayesian or frequentist computation. Journal of Animal Ecology, 89, 10.1111/1365-2656.13087.CrossRefGoogle ScholarPubMed
Nicol, S., Foster, J. & Kawaguchi, S. 2012. The fishery for Antarctic krill - recent developments. Fish and Fisheries, 13, 10.1111/j.1467-2979.2011.00406.x.CrossRefGoogle Scholar
Ohshima, K.I., Fukamachi, Y., Williams, G.D., Nihashi, S., Roquet, F., Kitade, Y., et al. 2013. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nature Geoscience, 6, 10.1038/ngeo1738.CrossRefGoogle Scholar
Otley, H., Reid, T., Phillips, R., Wood, A., Phalan, B. & Forster, I. 2007. Origin, age, sex and breeding status of wandering albatrosses (Diomedea exulans), northern (Macronectes halli) and southern giant petrels (Macronectes giganteus) attending demersal longliners in Falkland Islands and Scotia Ridge waters, 2001–2005. Polar Biology, 30, 10.1007/s00300-006-0192-8.CrossRefGoogle Scholar
Patterson, D.L., Woehler, E.J., Croxall, J.P., Cooper, J., Poncet, S., Hunter, S. & Fraser, W.R. 2008. Breeding distribution and population status of the northern giant petrel Macronectes halli and the southern giant petrel M. giganteus. Marine Ornithology, 124, 115124.Google Scholar
Petry, M.V., Valls, F.C.L., Petersen, E.S., Finger, J.V.G. & Krüger, L. 2018. Population trends of seabirds at Stinker Point, Elephant Island, Maritime Antarctica. Antarctic Science, 30, 10.1017/S0954102018000135.CrossRefGoogle Scholar
Pistorius, P.A., Baylis, A., Crofts, S. & Pütz, K. 2012. Population development and historical occurrence of king penguins at the Falkland Islands. Antarctic Science, 24, 10.1017/S0954102012000302.CrossRefGoogle Scholar
Risi, M.M., Jones, C.W., Osborne, A.M., Steinfurth, A. & Oppel, S. 2021. Southern giant petrels Macronectes giganteus depredating breeding Atlantic yellow-nosed albatrosses Thalassarche chlororhynchos on Gough Island. Polar Biology, 44, 10.1007/s00300-021-02810-x.CrossRefGoogle Scholar
Ryan, P.G., Sommer, E. & Breytenbach, E. 2008. Giant petrels Macronectes hunting Northern Rockhopper Penguins Eudyptes moseleyi at sea. Ardea, 96, 10.5253/078.096.0116.CrossRefGoogle Scholar
Santa Cruz, F., Krüger, L. & Cárdenas, C.A. 2022. Spatial and temporal catch concentrations for Antarctic krill: implications for fishing performance and precautionary management in the Southern Ocean. Ocean & Coastal Management, 223, 10.1016/J.OCECOAMAN.2022.106146.CrossRefGoogle Scholar
Schofield, O., Brown, M., Kohut, J., Nardelli, S., Saba, G., Waite, N. & Ducklow, H. 2018. Changes in the upper ocean mixed layer and phytoplankton productivity along the west Antarctic Peninsula. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 10.1098/rsta.2017.0173.Google ScholarPubMed
Schultz, C., Doney, S.C., Hauck, J., Kavanaugh, M.T. & Schofield, O. 2021. Modeling phytoplankton blooms and inorganic carbon responses to sea-ice variability in the west Antarctic Peninsula. Journal of Geophysical Research: Biogeosciences, 126, 10.1029/2020JG006227.Google Scholar
Sergio, F., Caro, T., Brown, D., Clucas, B., Hunter, J., Ketchum, J., et al. 2008. Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annual Review of Ecology, Evolution, and Systematics, 39, 10.1146/annurev.ecolsys.39.110707.173545.CrossRefGoogle Scholar
Signer, J., Fieberg, J. & Avgar, T. 2017. Estimating utilization distributions from fitted step-selection functions. Ecosphere, 8, 10.1002/ECS2.1771.CrossRefGoogle Scholar
Signer, J., Fieberg, J. & Avgar, T. 2019. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecology and Evolution, 9, 10.1002/ece3.4823.CrossRefGoogle ScholarPubMed
Silva, M.P., Favero, M., Casaux, R. & Baroni, A. 1998. The status of breeding birds at Harmony Point, Nelson Island, Antarctica in summer 1995/96. Marine Ornithology, 26, 7578.Google Scholar
Silva, A.B., Arigony-Neto, J., Braun, M.H., Espinoza, J.M.A., Costi, J. & Janã, R. 2020. Spatial and temporal analysis of changes in the glaciers of the Antarctic Peninsula. Global and Planetary Change, 184, 10.1016/j.gloplacha.2019.103079.CrossRefGoogle Scholar
Soanes, L.M., Arnould, J.P.Y., Dodd, S.G., Sumner, M.D. & Green, J.A. 2013. How many seabirds do we need to track to define home-range area? Journal of Applied Ecology, 50, 10.1111/1365-2664.12069.CrossRefGoogle Scholar
Spreen, G., Kaleschke, L. & Heygster, G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research - Oceans, 113, 10.1029/2005JC003384.CrossRefGoogle Scholar
Sullivan, B.J., Reid, T.A. & Bugoni, L. 2006. Seabird mortality on factory trawlers in the Falkland Islands and beyond. Biological Conservation, 131, 10.1016/j.biocon.2006.02.007.CrossRefGoogle Scholar
Tam, J.C., Link, J.S., Rossberg, A.G., Rogers, S.I., Levin, P.S., Rochet, M.J., et al. 2017. Towards ecosystem-based management: identifying operational food-web indicators for marine ecosystems. ICES Journal of Marine Science, 74, 10.1093/icesjms/fsw230.CrossRefGoogle Scholar
Thiers, L., Delord, K., Barbraud, C., Phillips, R.A., Pinaud, D. & Weimerskirch, H. 2014. Foraging zones of the two sibling species of giant petrels in the Indian Ocean throughout the annual cycle: implication for their conservation. Marine Ecology Progress Series, 499, 10.3354/meps10620.CrossRefGoogle Scholar
Tin, T., Liggett, D., Maher, P.T. & Lamers, M. 2014. Antarctic futures: human engagement with the Antarctic environment. Berlin: Springer, 360 pp,CrossRefGoogle Scholar
Tirelli, V., Suaria, G. & Lusher, A.L. 2020. Microplastics in polar samples. In Rocha-Santos, T., Costa, M.F. & Mouneyrac, C., eds, Handbook of microplastics in the environment, 1st edition. Berlin: Springer, 142.Google Scholar
Trathan, P.N., Warwick-Evans, V., Young, E.F., Friedlaender, A., Kim, J.H. & Kokubun, N. 2022. The ecosystem approach to management of the Antarctic krill fishery - the ‘devils are in the detail’ at small spatial and temporal scales. Journal of Marine Systems, 225, 10.1016/j.jmarsys.2021.103598.CrossRefGoogle Scholar
Trivelpiece, W.Z., Hinke, J.T., Miller, A.K., Reiss, C.S., Trivelpiece, S.G. & Watters, G.M. 2011. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 108, 10.1073/pnas.1016560108.Google ScholarPubMed
Velarde, E., ANderson, D.W. & Ezcurra, E. 2019. Seabird clues to ecosystem health. Science, 365, 10.1126/science.aaw9999CrossRefGoogle ScholarPubMed
Vorrath, M.E., Müller, J., Rebolledo, L., Cárdenas, P., Shi, X., Esper, O., et al. 2020. Sea ice dynamics in the Bransfield Strait, Antarctic Peninsula, during the past 240 years: a multi-proxy intercomparison study. Climate of the Past, 16, 10.5194/cp-16-2459-2020.CrossRefGoogle Scholar
Votier, S.C., Bicknell, A., Cox, S.L., Scales, K.L. & Patrick, S.C. 2013. A bird's eye view of discard reforms: bird-borne cameras reveal seabird/fishery interactions. PLoS ONE, 8, 10.1371/journal.pone.0057376.CrossRefGoogle ScholarPubMed
Votier, S.C., Bearhop, S., Witt, M.J., Inger, R., Thompson, D. & Newton, J. 2010. Individual responses of seabirds to commercial fisheries revealed using GPS tracking, stable isotopes and vessel monitoring systems. Journal of Applied Ecology, 47, 10.1111/j.1365-2664.2010.01790.x.CrossRefGoogle Scholar
Weimerskirch, H., Collet, J., Corbeau, A., Pajot, A., Hoarau, F., Marteau, C., et al. 2020. Ocean sentinel albatrosses locate illegal vessels and provide the first estimate of the extent of nondeclared fishing. Proceedings of the National Academy of Sciences of the United States of America, 117, 10.1073/pnas.1915499117.Google ScholarPubMed