Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T22:46:24.946Z Has data issue: false hasContentIssue false

First glaciological investigations at Ridge B, central East Antarctica

Published online by Cambridge University Press:  08 June 2021

Alexey A. Ekaykin*
Affiliation:
Arctic and Antarctic Research Institute, 38 Beringa St., 199397St Petersburg, Russia Institute of Earth Sciences of Saint Petersburg State University, 31–33 10-ya liniya V.O., 199178St Petersburg, Russia
Alexey V. Bolshunov
Affiliation:
Saint Petersburg Mining University, 2 21-ya liniya V.O., 199106St Petersburg, Russia
Vladimir Ya. Lipenkov
Affiliation:
Arctic and Antarctic Research Institute, 38 Beringa St., 199397St Petersburg, Russia
Mirko Scheinert
Affiliation:
Institut für Planetare Geodäsie, Technische Universität Dresden, Helmholtzstraße 10, 01069Dresden, Germany
Lutz Eberlein
Affiliation:
Institut für Planetare Geodäsie, Technische Universität Dresden, Helmholtzstraße 10, 01069Dresden, Germany
Evgeniy Brovkov
Affiliation:
Aerogeodeziya, 8 Buharestskaya St., 192102St Petersburg, Russia
Sergey V. Popov
Affiliation:
Institute of Earth Sciences of Saint Petersburg State University, 31–33 10-ya liniya V.O., 199178St Petersburg, Russia Polar Marine Geosurvey Expedition, 24 Pobedy St., 198412St Petersburg, Lomonosov, Russia
Alexey V. Turkeev
Affiliation:
Arctic and Antarctic Research Institute, 38 Beringa St., 199397St Petersburg, Russia

Abstract

The region of Ridge B in central East Antarctica is one of the last unexplored parts of the continent and, at the same time, ranks among the most promising places to search for Earth's oldest ice. In January 2020, we carried out the first scientific traverse from Russia's Vostok Station to the topographical dome of Ridge B (Dome B, 3807 m above sea level, 79.02°S, 93.69°E). The glaciological programme included continuous snow-radar profiling and geodetic positioning along the traverse's route, installation of snow stakes, measurements of snow density, collection of samples for stable water isotope and chemical analyses and drilling of a 20 m firn core. The first results of the traverse show that the surface mass balance at Dome B (2.28 g cm−2 year−1) is among the lowest in Antarctica. The firn temperature below the layer of annual variations is −58.1 ± 0.2°C. A very low value of heavy water stable isotope content (-58.2‰ for oxygen-18) was discovered at a distance of 170 km from Vostok Station. This work is the first step towards a comprehensive reconnaissance study of the Ridge B area aimed at locating the best site for future deep drilling for the oldest Antarctic ice.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosta, C., Amory, C., Kittel, C., Orsi, A., Favier, V., Gallée, H., et al. 2019. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. The Cryosphere, 13, 10.5194/tc-13-281-2019.CrossRefGoogle Scholar
Berends, C.J., de Boer, B. & van de Wal, R.S.W. 2021. Reconstructing the evolution of ice sheets, sea level and atmospheric CO2 during the past 3.6 million years. Climate of the Past, 17, 10.5194/cp-2020-52.CrossRefGoogle Scholar
Burton-Johnson, A., Dziadek, R. & Martin, C. 2020. Geothermal heat flow in Antarctica: current and future directions. The Cryosphere, 14, 10.5194/tc-14-3843-2020.CrossRefGoogle Scholar
Chalk, T.B., Hain, M.P., Foster, G.L., Rohling, E.J., Sexton, P.F., Badger, M.P.S., et al. 2017. Causes of ice age intensification across the Mid-Pleistocene Transition. Proceedings of the National Academy of Sciences of the Unites States of America, 114, 10.1073/pnas.1702143114.CrossRefGoogle ScholarPubMed
Cui, Y., Schubert, B.A. & Jahren, A.H. 2020. A 23 m.y. record of low atmospheric CO2. Geology, 48, 10.1130/G47681.1.Google Scholar
Ekaykin, A.A., Lipenkov, V.Ya. & Shibaev, Yu.A. 2012. Spatial distribution of the snow accumulation rate along the ice flow lines between Ridge B and Lake Vostok. Journal Ice and Snow, 4, 122128.Google Scholar
Ekaykin, A.A., Lipenkov, V.Ya., Kuzmina, I.N., Petit, J.R., Masson-Delmotte, V. & Johnsen, S.J. 2004. The changes in isotope composition and accumulation of snow at Vostok Station over the past 200 years. Annals of Glaciology, 39, 569575.CrossRefGoogle Scholar
Ekaykin, A.A., Teben'kova, N.A., Lipenkov, V.Ya., Tchikhatchev, K.B., Veres, A.N. & Richter, A. 2020. Underestimation of snow accumulation rate in central Antarctica (Vostok station) derived from stake measurements. Russian Meteorology and Hydrology, 45, 10.3103/S1068373920020090.CrossRefGoogle Scholar
Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., et al. 2013. Where to find 1.5 million yr old ice for the IPICS ‘oldest-ice’ ice core. Climate of the Past, 9, 10.5194/cp-9-2489-2013.CrossRefGoogle Scholar
Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 10.5194/tc-7-375-2013.CrossRefGoogle Scholar
Frezzotti, M., Pourchet, M., Flora, O., Gandolfi, S., Gay, M., Urbini, S., et al. 2004. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Climate Dynamics, 23, 10.1007/s00382-004-0462-5.CrossRefGoogle Scholar
Howat, I.M., Porter, C., Smith, B.E., Noh, M.-J. & Morin, P. 2019. The Reference Elevation Model of Antarctica. The Cryosphere, 13, 10.5194/tc-13-665-2019.CrossRefGoogle Scholar
Jouzel, J., Barkov, N.I., Barnola, J.M., Bender, M., Chappellaz, J., Genthon, C., et al. 1993. Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature, 364, 407412.CrossRefGoogle Scholar
Jouzel, J., Vaikmae, R., Petit, J.R., Martin, M., Duclos, Y., Stievenard, M., et al. 1995. The two-step shape and timing of the last deglaciation in Antarctica. Climate Dynamics, 11, 151161.CrossRefGoogle Scholar
Karlsson, N.B., Binder, T., Eagles, G., Helm, V., Pattyn, F., Van Liefferinge, B. & Eisen, O. 2018. Glaciological characteristics in the Dome Fuji region and new assessment for ‘oldest ice’. The Cryosphere, 12, 10.5194/tc-12-2413-2018.CrossRefGoogle Scholar
Lipenkov, V.Ya. & Ekaykin, A.A. 2018. V poiskah drevneyshego l'da Antarktidy [Hunting for the Antarctica's oldest ice]. Journal Ice and Snow, 58, 10.15356/2076-6734-2018-2-255-260 (in Russian).Google Scholar
Lipenkov, V.Ya., Salamatin, A.N., Jiang, W., Ritterbusch, F., Bender, M.L., Orsi, A., et al. 2019. New ice dating tools reveal 1.2 Ma old meteoric ice near the base of the Vostok ice core. Geophysical Research Abstracts, 21, EGU2019-8505.Google Scholar
Luthi, D., le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., et al. 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 10.1038/nature06949.CrossRefGoogle ScholarPubMed
Ma, T., Li, L., Shi, G. & Li, Y. 2020. Acquisition of post-depositional effects on stable isotopes (δ18O and δD) of snow and firn at Dome A, East Antarctica. MPDI Water, 12, 10.3390/w12061707.Google Scholar
Masson-Delmotte, V., Hou, S., Ekaykin, A.A., Jouzel, J., Aristarain, A., Bernardo, R.T., et al. 2008. A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modeling. Journal of Climate, 21, 33593387.CrossRefGoogle Scholar
Osipov, E.Y., Khodzher, T.V., Golobokova, L.P., Onischuk, N.A., Lipenkov, V.Ya., Ekaykin, A.A., et al. 2014. High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica. The Cryosphere, 8, 10.5194/tc-8-843-2014.CrossRefGoogle Scholar
Parrenin, F., Rémy, F., Ritz, C., Siegert, M.J. & Jouzel, J. 2004. New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core. Journal of Geophysical Research - Atmospheres, 109, 10.1029/2004JD004561.CrossRefGoogle Scholar
Passalacqua, O., Cavitte, M., Gagliardini, O., Gillet-Chaulet, F., Parrenin, F., Ritz, C. & Young, D. 2018. Brief communication: candidate sites of 1.5 Myr old ice 37km southwest of the Dome C summit, East Antarctica. The Cryosphere, 12, 10.5194/tc-12-2167-2018.CrossRefGoogle Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436.CrossRefGoogle Scholar
Popov, S.V. & Eberlein, L. 2014. Opyt primeneniya georadara dlya izucheniya stroeniya snezhno-firnovoy tolschi I grunta Vostochnoy Antarktidy [Investigation of snow-firn thickness and ground in the East Antarctica by means of geophysical radar]. Journal Ice and Snow, 54, 10.15356/2076-6734-2014-4-95-106 (in Russian).Google Scholar
Quiquet, A., Duma, C., Ritz, C., Peyaud, V. & Roche, D.M. 2018. The GRISLI ice sheet model (version 2.0): calibration and validation for multi-millennial changes of the Antarctic ice sheet. Geoscientific Model Development, 11, 10.5194/gmd-11-5003-2018.CrossRefGoogle Scholar
Ritterbusch, F., Chu, Y.-Q., Crotti, I., Dong, X.-Z., Hu, S.-M., Gu, J.-Q., et al. 2019. Revealing old ice with 81Kr. Geophysical Reseach Abstracts, 21, EGU2019-11635.Google Scholar
Salamatin, A.N., Tsyganova, E.A., Popov, S.V. & Lipenkov, V. Ya. 2009. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica). In Hondoh, T., ed. Physics of ice core records. Sapporo: Hokkaido University Press, 167194.Google Scholar
Schröder, L., Richter, A., Fedorov, D.V., Eberlein, L., Brovkov, E.V., Popov, S.V., et al. 2017. Validation of satellite altimetry by kinematic GNSS in central East Antarctica. The Cryosphere, 11, 10.5194/tc-11-1111-2017.CrossRefGoogle Scholar
Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., et al. 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature, 484, 10.1038/nature10915.CrossRefGoogle ScholarPubMed
Shibaev, Yu.A., Tchikhatchev, K.B., Lipenkov, V.Ya., Ekaykin, A.A., Lefebvre, E., Arnaud, L. & Petit, J.R. 2019. Sezonnye variatsii temperatury snezhnoy tolschi i teploprovodnost' snega v rayone stantsii Vostok, Antarktida [Seasonal variations of snowpack temperature and thermal conductivity of snow in the vicinity of Vostok station, Antarctica]. Arctic and Antarctic Research, 65, 169185 (in Russian).CrossRefGoogle Scholar
Skakun, A.A., Lipenkov, V.Ya., Parrenin, F., Ritz, C. & Popov, S.V. 2019. On the availability of old meteoric ice in the vicinity of Dome B, East Antarctica. Geophysical Research Abstracts, 21, EGU2019-11315.Google Scholar
Souchez, R., Jean-Baptist, P., Petit, J.R., Lipenkov, V.Ya. & Jouzel, J. 2002. What is the deepest part of the Vostok ice core telling us? Earth-Science Reviews, 60, 131146.CrossRefGoogle Scholar
Stenni, B. 2020. Long-term climate evolution based on ice core records. In Oliva, M. & Ruiz-Fernández, J., eds. Past Antarctica. Paleoclimatology and climate change. Cambridge, MA: Academic Press, 325.Google Scholar
Veres, A.N., Ekaykin, A.A., Lipenkov, V.Ya., Turkeev, A.V. & Khodzher, T.V. 2020. Pervye dannye o klimaticheskoy izmenchivosti v rayone st. Vostok (Tsentral'naya Antarktida) za poslednie 2000 let po rezul'tatam izucheniya snezhno-firnovogo kerna [The first data on the climatic variability in the vicinity of Vostok Station (central Antarctica) over the past 2000 years based on the study of a snow-firn core]. Arctic and Antarctic Research, 66, 10.30758/0555-2648-2020-66-4-482-500 (in Russian).Google Scholar
Villiger, A. & Dach, R. (eds). 2020. International GNSS service: technical report 2019. Bern: IGS Central Bureau and University of Bern Open Publishing.Google Scholar
Vladimirova, D.O., Ekaykin, A.A., Lipenkov, V.Ya., Popov, S.V. & Shibaev, Yu.A. 2015. Prostranstvennaya izmenchivost' skorosti nakopleniya i izotopnogo sostava snega v Indookeanskom sektore Vostochnoy Antarktidy, vklyuchaya rayon podlednikovogo ozera Vostok [Spatial variability of snow accumulation rate and isotopic composition in Indian ocean sector of East Antarctica including the area of subglacial lake Vostok]. Arctic and Antarctic Research, 1, 6986 (in Russian).Google Scholar
Yan, Y., Bender, M.L., Brook, E.J., Clifford, H.M., Kemeny, P.C., Kurbatov, A.V., et al. 2019. Two-million-year-old snapshots of atmospheric gases from Antarctic ice. Nature, 574, 10.1038/s41586-019-1692-3.CrossRefGoogle ScholarPubMed
Zhao, L., Moore, J.C., Sun, B., Tang, X. & Guo, X. 2018. Where is the 1-million-year-old ice at Dome A? The Cryosphere, 12, 10.5194/tc-12-1651-2018.CrossRefGoogle Scholar