Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:43:42.408Z Has data issue: false hasContentIssue false

Breeding behaviour of colour-aberrant Adélie penguins (Pygoscelis adeliae) at Cape Crozier, Ross Island, Antarctica

Published online by Cambridge University Press:  18 May 2021

Parker M. Levinson*
Affiliation:
Point Blue Conservation Science, 3820 Cypress Dr #11, Petaluma, CA94954, USA
Annie E. Schmidt
Affiliation:
Point Blue Conservation Science, 3820 Cypress Dr #11, Petaluma, CA94954, USA
Virginia Morandini
Affiliation:
Oregon State University, 104 Nash Hall, Corvallis, OR97331, USA
Megan Elrod
Affiliation:
Point Blue Conservation Science, 3820 Cypress Dr #11, Petaluma, CA94954, USA
Dennis Jongsomjit
Affiliation:
Point Blue Conservation Science, 3820 Cypress Dr #11, Petaluma, CA94954, USA
Grant Ballard
Affiliation:
Point Blue Conservation Science, 3820 Cypress Dr #11, Petaluma, CA94954, USA

Abstract

Plumage colour variation occurs widely among bird species and is often associated with individual fitness. More specifically, colouration can affect thermoregulatory ability, mate selection and conspicuousness during foraging. Colour aberrations can be caused by genetic mutations, dietary imbalances, environmental conditions or disease and are rare. Plumage variations have previously been noted in Adélie penguins, although without any follow-up to measure implications for behaviour or fitness. To assess how this low-frequency condition affects breeding in Adélie penguins, we monitored the breeding of several colour-aberrant Adélie penguins during the 2019–2020 nesting season at the large Cape Crozier, Ross Island colony (> 300,000 pairs). In total, we found 12 individuals with unusual plumage for a frequency of 1:50,000 breeding penguins. There were seven dark brown Adélie penguins, three progressive greying Adélie penguins, one dilute Adélie penguin and one brown Adélie penguin, of which five were female, three male and four of unknown sex. Six colour aberrants initiated breeding with a normal-coloured mate, and five raised at least one chick to crèche. The likelihood of breeding and breeding success of colour aberrants were similar to those of normal-coloured Adélie penguins, suggesting that colour aberrations do not negatively affect breeding.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainley, D.G. 2002. The Adélie penguin: bellwether of climate change. New York: Columbia University Press, 310 pp.CrossRefGoogle Scholar
Ainley, D.G. & Emison, W.B. 2008. Sexual size dimorphism in Adélie penguins. Ibis, 114, 10.1111/j.1474-919x.1972.tb02613.x.CrossRefGoogle Scholar
Ainley, D.G., LeResche, R.E. & Sladen, W.J.L. 1983. Breeding biology of the Adélie penguin. Berkeley: University of California Press, 240 pp.Google Scholar
Anderson, D. & Shanhun, F. 2020. Adélie penguin census data - Manaaki Whenua - Landcare Research DataStore. Retrieved from https://datastore.landcareresearch.co.nz/mk/dataset/adelie-penguin-census-data.Google Scholar
Araya, B. & Arrieta, A. 1971. Las aves de Caleta Potter, IslaRey Jorge, Antártica chilena - censo y distribución. Revista de Biología Marina, 14, 121128.Google Scholar
Banks, J.C., Mitchell, A.D., Waas, J.R. & Paterson, A.M. 2002. An unexpected pattern of molecular divergence within the blue penguin (Eudyptula minor) complex. Notornis, 49, 2938.Google Scholar
Carpenter-Kling, T., Dyer, B.M., Makhado, A.B. & Pistorius, P.A. 2017. Plumage aberrations in macaroni penguins Eudyptes chrysolophus at sub-Antarctic Marion Island. Polar Biology, 40, 10.1007/s00300-017-2080-9.CrossRefGoogle Scholar
Cook, L.M., Grant, B.S., Saccheri, I.J. & Mallet, J. 2012. Selective bird predation on the peppered moth: the last experiment of Michael Majerus. Biology Letters, 8, 10.1098/rsbl.2011.1136.CrossRefGoogle ScholarPubMed
Corbel, H., Legros, A., Haussy, C., Jacquin, L., Gasparini, J., Karimi, B. & Frantz, A. 2016. Stress response varies with plumage colour and local habitat in feral pigeons. Journal of Ornithology, 157, 10.1007/s10336-016-1331-9.CrossRefGoogle Scholar
Dobson, F.S., Couchoux, F., & Jouventin, C., P. 2011. Sexual selection on a coloured ornament in king penguins. Ethology, 117, 10.1111/j.1439-0310.2011.01940.x.CrossRefGoogle Scholar
Dugger, K.M., Ballard, G., Ainley, D.G. & Barton, K.J. 2006. Effects of flipper bands on foraging behavior and survival of Adélie penguins (Pygoscelis adeliae). The Auk, 123, 10.1642/0004-8038.CrossRefGoogle Scholar
Everitt, D.A. & Miskelly, C. 2003. A review of isabellinism in penguins. Notornis, 50, 4351.Google Scholar
Falla, R.A. 1937. Birds. British Australian New Zealand Antarctic Research Expedition, 1929–931 Report Series B, 2, 1304.Google Scholar
Finger, J.V.G., Aver, G.F., Koch, N.M. & Petry, M.V. 2017. A rare melanistic chinstrap penguin Pygoscelis antarcticus at Penguin Island, Maritime Antarctica. Polar Biology, 40, 10.1007/s00300-017-2098-z.CrossRefGoogle Scholar
Finger, J.V.G., dos Santos, C.R., Corrêa, L.L.C., de Brum, A.C. & Petry, M.V. 2018. A brown Adélie penguin Pygoscelis adeliae breeding at King George Island, Maritime Antarctica. Polar Biology, 41, 10.1007/s00300-018-2326-1.CrossRefGoogle Scholar
Forrest, S.C. & Naveen, R. 2000. Prevalence of leucism in pygocelid penguins of the Antarctic Peninsula. Waterbirds/The Waterbird Society, 23, 283285.Google Scholar
Huber, C.D., Durvasula, A., Hancock, A.M. & Lohmueller, K.E. 2018. Gene expression drives the evolution of dominance. Nature Communications, 9, 2750.CrossRefGoogle ScholarPubMed
Jouventin, P., Nolan, P.M., Stephen Dobson, F. & Nicolaus, M. 2007. Coloured patches influence pairing rate in king penguins. Ibis, 150, 10.1111/j.1474-919x.2007.00749.x.CrossRefGoogle Scholar
Juáres, M.A., Negrete, J., Mennucci, J.A., Longarzo, L. & Coria, N.R. 2011. ‘Ino’ colour aberration in Gentoo penguin (Pygoscelis papua) in Antarctica. Notornis, 58, 169172.Google Scholar
Le Corre, M. 1999. Plumage polymorphism of red-footed boobies (Sula sula) in the western Indian Ocean: an indicator of biogeographic isolation. Journal of Zoology, 249, 10.1111/j.1469-7998.1999.tb01210.x.CrossRefGoogle Scholar
Lynch, H.J. & LaRue, M.A. 2014. First global census of the Adélie penguin. The Auk, 131, 10.1642/auk-14-31.1.CrossRefGoogle Scholar
MacDougall, A.K. & Montgomerie, R. 2003. Assortative mating by carotenoid-based plumage colour: a quality indicator in American goldfinches, Carduelis tristis. Die Naturwissenschaften, 90, 464467.CrossRefGoogle ScholarPubMed
Maderson, P.F.A. 1975. Melanism. BioScience, 25, 10.2307/1297065.Google Scholar
Margalida, A., Negro, J.J. & Galván, I. 2008. Melanin-based color variation in the bearded vulture suggests a thermoregulatory function. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 149, 8791.CrossRefGoogle ScholarPubMed
Nolan, P.M., Dobson, F.S., Dresp, B. & Jouventin, P. 2006. Immunocompetence is signalled by ornamental colour in king penguins, Aptenodytes patagonicus. Evolutionary Ecology Research, 8, 13251332.Google Scholar
Penney, R.L. 1968. Territorial and social behavior in the Adélie penguin. Antarctic Bird Studies, 12, 83131.Google Scholar
R Development Core Team. 2019. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Reiertsen, T.K., Erikstad, K.E., Barrett, R.T., Sandvik, H. & Yoccoz, N.G. 2012. Climate fluctuations and differential survival of bridled and non-bridled common guillemots (Uria aalge). Ecosphere, 3, 10.1890/es12-00031r.CrossRefGoogle Scholar
Reudink, M.W., Studds, C.E., Marra, P.P., Kurt Kyser, T. & Ratcliffe, L.M. 2009. Plumage brightness predicts non-breeding season territory quality in a long-distance migratory songbird, the American redstart Setophaga ruticilla. Journal of Avian Biology, 40, 10.1111/j.1600-048x.2008.04377.x.CrossRefGoogle Scholar
Rohwer, S., 1990. Foraging differences between white and dark morphs of the Pacific reef heron Egretta sacra. Ibis, 132, 2126.CrossRefGoogle Scholar
Roulin, A. 2014. Melanin-based colour polymorphism responding to climate change. Global Change Biology, 20, 33443350.CrossRefGoogle ScholarPubMed
Roulin, A. & Ducrest, A.L. 2011. Association between melanism, physiology and behaviour: a role for the melanocortin system. European Journal of Pharmacology, 660, 10.1016/j.ejphar.2011.01.036.CrossRefGoogle ScholarPubMed
Sirkiä, P.M., Virolainen, M. & Laaksonen, T. 2010. Melanin coloration has temperature-dependent effects on breeding performance that may maintain phenotypic variation in a passerine bird. Journal of Evolutionary Biology, 23, 10.1111/j.1420-9101.2010.02100.x.CrossRefGoogle Scholar
Stevens, B.L. 2000. Partial melanism in king penguins Aptenodytes patagonicus. Marine Ornithology, 28, 83.Google Scholar
Tate, G.J. & Amar, A. 2017. Morph specific foraging behavior by a polymorphic raptor under variable light conditions. Scientific Reports, 7, 10.1038/s41598-017-07829-x.CrossRefGoogle ScholarPubMed
Traisnel, G., Pichegru, L., Visser, H.J., & Edwards, L.C. 2018. Colour aberrations in African penguins Spheniscus demersus. Marine Ornithology, 46, 1922.Google Scholar
Van Grouw, H. 2006. Not every white bird is an albino: sense and nonsense about colour aberrations in birds. Dutch Birding, 28, 7989.Google Scholar
Van Grouw, H. 2013. The causes and recognition of common colour aberrations in birds. British Birds, 106, 1729.Google Scholar
Van Grouw, H. 2018. White feathers in black birds. British Birds, 111, 250263.Google Scholar
Wilson, E.A. 1907. The Adélie penguin (Pygoscelis adeliae). British National Antarctic Expedition 1901–1904. Natural History, 2, 3658.Google Scholar