Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T02:21:02.772Z Has data issue: false hasContentIssue false

Analysis of near-surface ozone variations in Terra Nova Bay, Antarctica

Published online by Cambridge University Press:  27 February 2008

P. Cristofanelli
Affiliation:
ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
P. Bonasoni*
Affiliation:
ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
F. Calzolari
Affiliation:
ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
U. Bonafè
Affiliation:
ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
C. Lanconelli
Affiliation:
ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
A. Lupi
Affiliation:
ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
G. Trivellone
Affiliation:
ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
V. Vitale
Affiliation:
ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
B. Petkov
Affiliation:
ISAC-CNR, Via Gobetti 101, 40129 Bologna, Italy
*
*Corresponding author:[email protected]

Abstract

Ozone concentration measurements were made during December from 2001–2005 to quantify the contributions of different processes to near-surface ozone concentrations (O3) in Terra Nova Bay, Antarctica. The average O3 concentration was 20.3 ppbv. On days characterized by high solar radiation fluxes (HSR), significantly higher concentrations of O3 (21.3 ppbv) were recorded compared to days with low solar radiation fluxes (LSR days, 16.8 ppbv). High O3 concentrations could be related to strong winds from SW–NW. Three-dimensional back-trajectories show that air from the interior of the continent could affect O3 at Terra Nova Bay. Moreover, during HSR days, high O3 concentrations were also recorded in connection with weak circulation, suggesting that emissions from the Italian base (located 2 km north) could also represent a significant source of O3. To clarify the role of local pollution in Terra Nova Bay, O3 values were also calculated using the photochemical steady state (PSS) approximation under clear sky and cloudy conditions.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegrini, I., Ianniello, A., Vazzana, C., Montagnoli, M. & Valentini, F. 2000. Measurements for the determination of nitrogen containing species (NO2 and NOy) on Antarctica troposphere. In Colacino, M. & Giovanelli, G., eds. Italian Research on Antarctic Atmosphere. Bologna: Società Italiana di Fisica, 357361.Google Scholar
Argentini, S. & Mastrantonio, G. 1994. Barrier winds recorded during two summer campaigns and their interaction with the katabatic floes as observed by a tri-axial Doppler Sodar. International Journal of Remote Sensing, 15, 455466.CrossRefGoogle Scholar
Argentini, S., Del Buono, P., Della Vedova, A.M. & Mastrantonio, G. 1995. A statistical analysis of wind in Terra Nova Bay, Antarctica, for the austral summers 1988 and 1999. Atmospheric Research, 39, 145256.CrossRefGoogle Scholar
Barrie, L.A., Bottenheim, J.W., Schnell, R.C., Crutzen, P.J. & Rasmussen, R.A. 1988. Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature, 334, 138141.Google Scholar
Barnard, J.C. & Long, C.N. 2004. A simple empirical equation to calculate cloud optical thickness using shortwave broadband measurements. Journal of Applied Meteorology, 43, 10571066.2.0.CO;2>CrossRefGoogle Scholar
Beine, H.J., Honrath, R.E., Dominè, F., Simpson, W.R. & Fuentes, J.D. 2002. NOx during background and ozone depletion periods at Alert: fluxes above the snow surface. Journal of Geophysical Research, 107, 10.1029/2002JD002082.CrossRefGoogle Scholar
Bromwich, H.D., Parish, T.R., Pellegrini, A., Stearns, C.R. & Weidner, G.A. 1993. Spatial and temporal characteristics of the intense katabatic winds at Terra Nova Bay, Antarctica. Antarctic Research Series, 61, 4768.Google Scholar
Bromwich, H.D., Monaghan, A.J., Powers, J.G., Cassano, J.J., He-Lin, W., Ying-Hwa, K. & Pellegrini, A. 2003. Antarctic Mesoscale Prediction System (AMPS): a case study from the 2000–01 field season. Monthly Weather Review, 131, 412434.2.0.CO;2>CrossRefGoogle Scholar
Carrasco, J.F. & Bromwich, D.H. 1995. A midtropospheric subsynoptic-scale vortex that developed over the Ross Sea and Ross Ice Shelf of Antarctica. Antarctic Science, 7, 199210.CrossRefGoogle Scholar
Carpenter, L.J., Clemitshaw, K.C., Burgess, R.A., Penkett, S.A., Cape, J.N. & McFadyen, G.G. 1998. Investigation and evaluation of the NOx/O3 photochemical steady state. Atmospheric Environment, 32, 33533365.Google Scholar
Cava, D., Schipa, S., Tagliazucca, M. & Giostra, U. 2004. Some characteristics of atmospheric boundary layer in an Antarctic coastal region. In Colacino, M., ed. Italian Research on Antarctic Atmosphere and SCAR Workshop on Oceanography. Bologna: Società Italiana di Fisica, 185198.Google Scholar
Chudzynski, S., Czyzewski, A., Ernst, K., Pietruczuk, A., Skubiszak, W., Stacewicz, T., Stelmaszczyk, K., Szymanski, A., Sowka, I., Zwozdziak, A. & Zwozdziak, J. 2001. Observation of ozone concentration during the solar eclipse. Atmospheric Research, 57, 4349.CrossRefGoogle Scholar
Crawford, J.H., Davis, D.D., Chen, G., Buhr, M., Oltmans, S., Weller, R., Mauldin, L., Eisele, F., Shetter, R., Lefer, B., Arimoto, R. & Hogan, A. 2001. Evidence for photochemical production of ozone at the South Pole surface. Geophysical Research Letters, 28, 36413644.Google Scholar
Davis, D., Nowak, J.B., Chen, G., Buhr, M., Arimoto, R., Hogan, A., Eisele, F., Mauldin, L., Tanner, D., Shetter, R., Lefer, B. & McMurry, P. 2001. Unexpected high levels of NO observed at South Pole. Geophysical Research Letters, 28, 36253628.CrossRefGoogle Scholar
Draxler, R.R. & Rolph, G.D. 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). Silver Spring, MD: NOAA Air Resources Laboratory.Google Scholar
Gerasopoulos, E., Zanis, P., Stohl, A., Papastefanou, C., Ringer, W., Tobler, L., Hubener, S., Gaggler, H.W., Kanter, H.J., Tositti, L. & Sandrini, S. 2001. A climatology of 7Be at four high-altitude stations at the Alps and the Northern Apennines. Atmospheric Environment, 35, 63476360.CrossRefGoogle Scholar
Gruzdev, A.N. & Stinov, S.A. 1992. Tropospheric ozone annual variation and possible troposphere-stratosphere coupling in the Artic and Antarctic as derived from ozone sounding at Resolute and Amundsen-Scott stations. Tellus, 45B, 8998.Google Scholar
Gruzdev, A.N., Elokov, A.S., Makarov, O.V. & Mokhov, I.I. 1993. Some recent results of Russian measurements of surface ozone in Antarctica. a meteorological interpretation. Tellus, 45B, 99105.CrossRefGoogle Scholar
Helmig, D., Oltmans, S.J., Carlson, D., Lamarque, J.-F., Jones, A., Labuschagne, C., Anlauf, K. & Hayden, K. 2007. A review of surface ozone in the polar region. Atmospheric Environment, 10.1016/j.atmosenv.2006.09.253.CrossRefGoogle Scholar
Jones, A.E., Weller, R., Anderson, P.S., Jacobi, H.-W., Wolff, E.W, Schrems, O. & Miller, H. 2001. Measurements of NOx emissions from the Antarctic snowpack. Geophysical Research Letters, 28, 14991502.Google Scholar
Oltmans, S.J., Johnson, B.J. & Helmig, D. 2007. Episodes of high ozone amounts at South Pole during summer and their impact on the long-term surface ozone variation. Atmospheric Environment, 10.1016/j.atmosenv.2007.10.020.Google Scholar
Madronich, S. & Flocke, F. 1998. The role of solar radiation in atmospheric chemistry. In Boule, P., ed. Handbook of environmental chemistry. Heidelberg: Springer, 126.Google Scholar
Murayama, S., Nakazawa, T., Tanaka, M., Aoki, S. & Kawaguchi, S. 1992. Variations of tropospheric ozone concentration over Syowa Station, Antarctica. Tellus, 44B, 262272.CrossRefGoogle Scholar
Roscoe, H.K., Kreher, K. & Friess, U. 2001. Ozone loss episodes in the free Antarctic troposphere, suggesting a possible climate feedback. Geophysical Research Letters, 28, 29112914.Google Scholar
Sander, S.P. 2000. Chemical kinetics and photochemical data for use in stratospheric modelling. Evaluation no 14. JPL Publication 02–25. Pasadena, CA: NASA. http://jpldataeval.jpl.nasa.gov/Google Scholar
Sebald, L., Treffeisen, R., Reimer, E. & Hies, T. 2000. Spectral analysis of air pollutants. Part 2: Ozone time series. Atmospheric Environment, 34, 35033509.Google Scholar
Seinfeld, J.H. & Pandis, S.N. 1998. Atmospheric chemistry and physics: from air pollution to climate change. New York: Wiley, 1326 pp.Google Scholar
Staehelin, J., Thudium, J., Buelher, R., Volz-Thomas, A. & Graber, W. 1994. Trends in surface ozone concentrations at Arosa (Switzerland). Atmospheric Environment, 28, 7587.CrossRefGoogle Scholar
Tarasick, D.W. & Bottenheim, J.W. 2002. Surface ozone depletion episodes in the Arctic and Antarctic from historical ozonesonde records. Atmospheric Chemistry and Physics, 2, 197205.CrossRefGoogle Scholar
Tarasova, O.A. & Karpetchko, A.Y. 2003. Accounting for local meteorological effects in the ozone time-series of Lovozero (Kola Peninsula). Atmospheric Chemistry and Physics, 3, 941949.CrossRefGoogle Scholar
Volz-Thomas, A., Paetz, H.-W., Houben, N., Konrad, S., Mihelcic, D., Kluepfel, T. & Perner, D. 2003. Inorganic trace gases and peroxy radicals during BERLIOZ at Pabstthum: an investigation of the photostationary state of NOx and O3. Journal of Geophysical Research, 108, 10.1029/2001JD001255.CrossRefGoogle Scholar
Yang, J., Honrath, R.E., Peterson, M.C., Dibb, J.E., Sumner, A.L., Shepson, P.B., Frey, M., Jacobi, H.-W., Swanson, A. & Blake, N. 2002. Impacts of snowpack emissions on deduced levels of OH and peroxy radicals at Summit, Greenland. Atmospheric Environment, 36, 25232534.Google Scholar
Weller, R., Jones, A.E., Wille, A., Jacobi, H.-W., McIntyre, H.P., Sturges, W.T., Huke, M. & Wagenbach, D. 2002. Seasonality of reactive nitrogen oxides (NOy) at Neumayer Station, Antarctica. Journal of Geophysical Research, 107, 16871697.CrossRefGoogle Scholar
WMO. 1995. International Codes - vol. I.1 (Annex II to WMO Technical Regulations). WMO–No. 306. Geneva: World Meteorological Organization.Google Scholar