Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T15:47:46.115Z Has data issue: false hasContentIssue false

An approach to quantifying Pliocene ice sheet dynamics via slope failure frequencies recorded in Antarctic Peninsula rise sediments

Published online by Cambridge University Press:  17 July 2009

Daniel A. Hepp*
Affiliation:
MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, PO Box 330440, 28334 Bremen, Germany
Tobias Mörz
Affiliation:
MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, PO Box 330440, 28334 Bremen, Germany

Abstract

Understanding of glacially driven sedimentary transport systems across the shelf to the slope and subsequently to deep sea sediment bodies along the Pacific continental margin of Antarctic Peninsula is crucial for interpreting ice sheet dynamics. Here we quantify slope-failure frequencies recorded in Pliocene core intervals of ODP Site 1095. We used the relationship between long-term sedimentation rate and marine carbon burial efficiency to calculate glacial or interglacial specific sedimentation rates. Using the decompacted average length of glacial-interglacial cycles it was possible to solve a set of linear equations to derive average half-periods of 61.59 and 59.77 kyr respectively for the time interval 5.8–3.2 Ma. The resulting frequency distribution of slope failures reflects short and rapid but cyclic ice advances every ∼375 years. Short retention times between slope loading and slope failure are supported by biogenic silica dissolution analyses. This study demonstrates the potential of the rise record to improve models of orbitally controlled size variations of the West Antarctic ice sheet and confirms the hypothesis of a highly dynamic ice sheet during the early Pliocene warm period.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton, G.D., Guyodo, Y.Brachfeld, S.A. 2002. Magnetostratigraphy of sediment drifts on the continental rise of West Antarctica (ODP Leg 178, Sites 1095, 1096, and 1101). In Barker, P.F., Camerlenghi, A., Acton, G.D. &Ramsay, A.T.S., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 178, 161.Google Scholar
Anderson, J.B., Wellner, J.S., Lowe, A.L., Mosola, A.B.Shipp, S.S. 2001. Footprint of the expanded West Antarctic ice sheet: ice stream history and behavior. GSA Today, 11, 49.2.0.CO;2>CrossRefGoogle Scholar
Azizi, F. 2000. Applied analyses in geotechnics. London: Routledge, 254 pp.CrossRefGoogle Scholar
Barker, P.F. 2002. Composite depths and spliced sections for Leg 178 Sites 1095 and 1096, Antarctic Peninsula continental rise. In Barker, P.F., Camerlenghi, A., Acton, G.D. &Ramsay, A.T.S., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 178, 115.Google Scholar
Barker, P.F.Camerlenghi, A. 2002. Glacial history of the Antarctic Peninsula from Pacific margin sediments. In Barker, P.F., Camerlenghi, A., Acton, G.D. &Ramsay, A.T.S., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 178, 140.Google Scholar
Bart, P.J., Hillenbrand, C.-D., Ehrmann, W.U., Iwai, M., Winter, D.Warny, S.A. 2007. Are Antarctic Peninsula Ice Sheet grounding events manifest in sedimentary cycles on the adjacent continental rise? Marine Geology, 236, 113.CrossRefGoogle Scholar
Bentley, C.R. 1998. Ice on the fast track. Nature, 394, 2122.CrossRefGoogle Scholar
Berger, A.L. 1977. Support for the astronomical theory of climatic change. Nature, 269, 4445.CrossRefGoogle Scholar
Burdige, D.J. 2006. Geochemistry of marine sediments. Princeton, NJ: Princeton University Press, 609 pp.Google Scholar
Cortese, G., Gersonde, R., Hillenbrand, C.-D.Kuhn, G. 2004. Opal sedimentation shifts in the World Ocean over the last 15 Myr. Earth and Planetary Science Letters, 224, 509527.CrossRefGoogle Scholar
DeMaster, D.J. 2002. The accumulation and cycling of biogenic silica in the Southern Ocean: Revisiting the marine silica budget. Deep-Sea Research II, 49, 31553167.CrossRefGoogle Scholar
Diviacco, P., Rebesco, M.A.Camerlenghi, A. 2006. Late Pliocene mega debris flow deposit and related fluid escapes identified on the Antarctic Peninsula continental margin by seismic reflection data analysis. Marine Geophysical Researches, 27, 109128.CrossRefGoogle Scholar
Dowdeswell, J.A., Ó Cofaigh, C.Pudsey, C.J. 2004. Continental slope morphology and sedimentary processes at the mouth of an Antarctic palaeo-ice stream. Marine Geology, 204, 203214.CrossRefGoogle Scholar
Elverhøi, A., Hooke, R.L.Solheim, A. 1998. Late Cenozoic erosion and sediment yield from the Svalbard–Barents Sea region: implications for understanding erosion of glacierized basins. Quaternary Science Reviews, 17, 209241.CrossRefGoogle Scholar
Grützner, J., Hillenbrand, C.-D.Rebesco, M.A. 2005. Terrigenous flux and biogenic silica deposition at the Antarctic continental rise during the late Miocene to early Pliocene: implications for ice sheet stability and sea ice coverage. Global and Planetary Change, 45, 131149.CrossRefGoogle Scholar
Grützner, J., Rebesco, M.A., Cooper, A.K., Forsberg, C.F., Kryc, K.A.Wefer, G. 2003. Evidence for orbitally controlled size variations of the East Antarctic ice sheet during the late Miocene. Geology, 31, 777780.CrossRefGoogle Scholar
Hepp, D.A., Mörz, T.Grützner, J. 2006. Pliocene glacial cyclicity in a deep-sea sediment drift (Antarctic Peninsula Pacific Margin). Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 181198.CrossRefGoogle Scholar
Hillenbrand, C.-D.Fütterer, D.K. 2002. Neogene to Quaternary deposition of opal on the continental rise west of the Antarctic Peninsula, ODP Leg 178, Sites 1095, 1096, and 1101. In Barker, P.F., Camerlenghi, A., Acton, G.D. &Ramsay, A.T.S., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 178, 133.Google Scholar
Iorio, M., Wolf-Welling, T.C.W.Mörz, T. 2004. Antarctic sediment drift and Plio–Pleistocene orbital periodicities (ODP Sites 1095, 1096, and 1101). In D’Argenio, B., Fischer, A.G., Silva, I.P., Weissert, H. &Ferreri, V., eds. Cyclostratigraphy: approaches and case histories. Tulsa, OK: Society for Sedimentary Geology, 231244.CrossRefGoogle Scholar
Iwai, M., Acton, G.D., Lazarus, D.B., Osterman, L.E.Williams, T. 2002. Magnetobiochronologic synthesis of ODP Leg 178 rise sediments from the Pacific sector of the Southern Ocean: Sites 1095, 1096, and 1101. In Barker, P.F., Camerlenghi, A., Acton, G.D. &Ramsay, A.T.S., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 178, 140.Google Scholar
Koning, E., Epping, E.van Raaphorst, W. 2002. Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions. Aquatic Geochemistry, 8, 3767.CrossRefGoogle Scholar
Koning, E., Brummer, G.-J., van Raaphorst, W., van Bennekom, J., Helder, W.van Iperen, J. 1997. Settling, dissolution and burial of biogenic silica in the sediments off Somalia (northwestern Indian Ocean). Deep-Sea Research II, 44, 13411360.CrossRefGoogle Scholar
Lauer-Leredde, C., Briqueu, L.Williams, T. 2002. A wavelet analysis of physical properties measured downhole and on core from Holes 1095B and 1096C (Antarctic Peninsula). In Barker, P.F., Camerlenghi, A., Acton, G.D. &Ramsay, A.T.S., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 178, 143.Google Scholar
Løseth, T.M. 1999. Submarine massflow sedimentation: computer modelling and basin-fill stratigraphy. Berlin: Springer, 156 pp.Google Scholar
Lucchi, R.G., Rebesco, M.A., Busetti, M., Caburlotto, A., Colizza, E.Fontolan, G. 2002. Sedimentary processes and glacial cycles on the sediment drifts of the Antarctic Peninsula Pacific margin: preliminary results of SEDANO-II project. New Zealand Journal of Geology and Geophysics, 35, 275280.Google Scholar
McGinnis, J.P.Hayes, D.E. 1995. The roles of downslope and along-slope depositional processes: southern Antarctic Peninsula continental rise. Antarctic Research Series, 68, 141156.Google Scholar
McManus, J., Hammond, D.E., Berelson, W.M., Kilgore, T.E., Demaster, D.J., Ragueneau, O.G.Collier, R.W. 1995. Early diagenesis of biogenic opal: dissolution rates, kinetics, and paleoceanographic implications. Deep-Sea Research II, 42, 871903.CrossRefGoogle Scholar
Mörz, T. 2002. From the inner shelf to the deep sea: depositional environments on the West Antarctic Peninsula margin: a sedimentological and seismostratigraphic study (ODP Leg 178). PhD thesis, Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven, 236 pp.Google Scholar
Müller, P.J.Schneider, R.R. 1993. An automated leaching method for the determination of opal in sediments and particulate matter. Deep-Sea Research I, 40, 425444.CrossRefGoogle Scholar
ODP Leg 178 Shipboard Scientific Party 1999. Site 1095. In Barker, P.F., Camerlenghi, A., Acton, G.D. &Ramsay, A.T.S., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 178, 1173.Google Scholar
O’Grady, D.B.Syvitski, J.P.M. 2001. Predicting profile geometry of continental slopes with a multi-process sedimentation model. In Merriam, D.F. &Davis, J.C., eds. Geologic modeling and simulation: sedimentary systems. New York: Springer, 99117.CrossRefGoogle Scholar
Pudsey, C.J. 2002. Neogene record of Antarctic Peninsula glaciation in continental rise sediments: ODP Leg 178, Site 1095. In Barker, P.F., Camerlenghi, A., Acton, G.D. &Ramsay, A.T.S., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 178, 125.Google Scholar
Pudsey, C.J.Camerlenghi, A. 1998. Glacial-interglacial deposition on a sediment drift on the Pacific margin of the Antarctic Peninsula. Antarctic Science, 10, 286308.CrossRefGoogle Scholar
Rabouille, C., Gaillard, J.-F., Treguer, P.Vincendeau, M.-A. 1997. Biogenic silica recycling in surficial sediments across the Polar Front of the Southern Ocean (Indian Sector). Deep-Sea Research II, 44, 11511176.CrossRefGoogle Scholar
Ragueneau, O., Tréguer, P., Leynaert, A., Anderson, R.F., Brzezinski, M.A., DeMaster, D.J., Dugdale, R.C., Dymond, J., Fischer, G.François, R. 2000. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26, 317365.CrossRefGoogle Scholar
Raymond, C.F. 2002. Ice sheets on the move. Science, 298, 21472148.CrossRefGoogle ScholarPubMed
Rebesco, M.A., Larter, R.D., Camerlenghi, A.Barker, P.F. 1996. Giant sediment drifts on the continental rise west of the Antarctic Peninsula. Geo-Marine Letters, 16, 6575.CrossRefGoogle Scholar
Rebesco, M.A., Pudsey, C.J., Canals, M., Camerlenghi, A., Barker, P.F., Estrada, F.Giorgetti, A. 2002. Sediment drifts and deep-sea channel systems, Antarctic Peninsula Pacific Margin. Geological Society of London Memoirs, 22, 353371.CrossRefGoogle Scholar
Rebesco, M.Camerlenghi, A. 2008. Late Pliocene margin development and mega debris flow deposits on the Antarctic continental margins: Evidence of the onset of the modern Antarctic Ice Sheet? Palaeogeography, Palaeoclimatology, Palaeoecology, 260, 149167.CrossRefGoogle Scholar
Schlüter, M. 1990. Early diagenesis of organic carbon and opal in sediments of the southern and eastern Weddell Sea: geochemical analysis and modelling. PhD thesis, Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven, 156 pp.Google Scholar
Stein, R. 1990. Organic carbon content/sedimentation rate relationship and its paleoenvironmental significance for marine sediments. Geo-Marine Letters, 10, 3744.CrossRefGoogle Scholar
Stow, D.A.V. 1986. Deep clastic seas. In Reading, H.G., ed. Sedimentary environments and facies. Oxford: Blackwell Scientific, 399444.Google Scholar
Stow, D.A.V.Mayall, M. 2000. Deep-water sedimentary systems: new models for the 21st century. Marine and Petroleum Geology, 17, 125135.CrossRefGoogle Scholar
Treguer, P., Nelson, D.M., Van Bennekom, A.J., DeMaster, D.J., Leynaert, A.Queguiner, B. 1995. The silica balance in the world ocean: a reestimate. Science, 268, 375379.CrossRefGoogle Scholar
Uenzelmann-Neben, G. 2006. Depositional patterns at Drift 7, Antarctic Peninsula: along-slope versus down-slope sediment transport as indicators for oceanic currents and climatic conditions. Marine Geology, 233, 4962.CrossRefGoogle Scholar
Van Der Weijden, A.J.Van Der Weijden, C.H. 2002. Silica fluxes and opal dissolution rates in the northern Arabian Sea. Deep-Sea Research I, 49, 157173.CrossRefGoogle Scholar