Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T16:26:53.187Z Has data issue: false hasContentIssue false

Tide gauge observations in Antarctica (1958–2014) and recent ice loss

Published online by Cambridge University Press:  06 February 2017

G. Galassi*
Affiliation:
Dipartimento di Scienze Pure e Applicate (DiSPeA), Universita degli Studi di Urbino ‘Carlo Bo’, Urbino, Italy
G. Spada
Affiliation:
Dipartimento di Scienze Pure e Applicate (DiSPeA), Universita degli Studi di Urbino ‘Carlo Bo’, Urbino, Italy Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, Italy

Abstract

Several historical sea level time series from Antarctic tide gauges, available from the Permanent Service for Mean Sea Level, are analysed. Two sea level curves, obtained by averaging data from the Antarctic Peninsula and West Antarctica, for 1958–2014, show trends of (2.0±0.1) and (1.8±0.2) mm yr-1, respectively. By empirical mode decomposition, cyclic and non-cyclic components of sea level change were separated. A periodicity of 4–5 years was confirmed and attributed to the effects of the Antarctic Circumpolar Wave. The non-cyclic components were found to show a ‘levelling off’ of ≈ 1 mm yr-1 since c. 2000, which cannot be attributed to the isostatic response to Holocene ice melting. Using assessed mass balance data from the West Antarctic Ice Sheet and the Antarctic Peninsula, we studied the response to current ice loss in the region and found that the levelling off could be partly explained by accelerated melting during the last approximately two decades. This may represent the first evidence of sea level fingerprints of glacial melting in Antarctica.

Type
Physical Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berthier, E., Scambos, T.A. & Shuman, C.A. 2012. Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002. Geophysical Research Letters, 39, 10.1029/2012GL051755.Google Scholar
Bevis, M., Kendrick, E., Smalley, R., Dalziel, I., Caccamise, D., Sasgen, I., Helsen, M., Taylor, F.M., Zhou, H., Brown, A., Raleigh, D., Willis, M., Wilson, T. & Konfal, S. 2009. Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochemistry, Geophysics, Geosystems, 10, 10.1029/2009GC002642. Google Scholar
Bindoff, N., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Qu’er’e, C., Levitus, S., Nojiri, Y., Shum, C. & Talley, L.D. 2007. Observations: oceanic climate change and sea level. In Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M. & Miller, H., eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 385432.Google Scholar
Bos, M.S., Fernandes, R.M.S., Williams, S.D.P. & Bastos, L. 2013. Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy, 87, 351360.Google Scholar
Capra, A. & Dietrich, R. 2008. Geodetic and geophysical observations in Antarctica: an overview in the IPY perspective. Berlin Heidelberg: Springer, 356 pp.Google Scholar
Church, J., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W., Stammer, D. & Unnikrishnan, A. 2013. Sea level change. In Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P., eds. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 11381191.Google Scholar
Douglas, B.C. 2008. Concerning evidence for fingerprints of glacial melting. Journal of Coastal Research, 24, 218227.CrossRefGoogle Scholar
Fleming, K.M., Tregoning, P., Kuhn, M., Purcell, A. & McQueen, H. 2012. The effect of melting land-based ice masses on sea-level around the Australian coastline. Australian Journal of Earth Sciences, 59, 457467.Google Scholar
Galassi, G. & Spada, G. 2015. Linear and non-linear sea-level variations in the Adriatic Sea from tide gauge records (1872–2012). Annals of Geophysics, 57, 10.4401/ag-6536.Google Scholar
Golledge, N.R., Kowalewski, D.E., Naish, T.R., Levy, R.H., Fogwill, C.J. & Gasson, E.G.W. 2015. The multi-millennial Antarctic commitment to future sea-level rise. Nature, 526, 10.1038/nature15706.CrossRefGoogle ScholarPubMed
Henry, O., Prandi, P., Llovel, W., Cazenave, A., Jevrejeva, S., Stammer, D., Meyssignac, B. & Koldunov, N. 2012. Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: contribution of the steric and mass components. Journal of Geophysical Research - Oceans, 117, 10.1029/2011JC007706.CrossRefGoogle Scholar
Huang, N.E., Shen, Z., Long, S.R., Wu, M.L.C., Shih, H.H., Zheng, Q.N., Yen, N.C., Tung, C.C. & Liu, H.H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society - Mathematical Physical and Engineering Sciences, A454, 903995.Google Scholar
Huybrechts, P. & de Wolde, J. 1999. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. Journal of Climate, 12, 21692188.Google Scholar
Ivins, E.R., Watkins, M.M., Yuan, D.-N., Dietrich, R., Casassa, G. & Rülke, A. 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003–2009. Journal of Geophysical Research - Solid Earth, 116, 10.1029/2010JB007607.Google Scholar
King, M.A. & Padman, L. 2005. Accuracy assessment of ocean tide models around Antarctica. Geophysical Research Letters, 32, 10.1029/2005GL023901.Google Scholar
Lutjeharms, J.R.E., Stavropoulos, C.C. & Koltermann, K.P. 1985. Tidal measurements along the Antarctic coastline. In Jacobs, S.S., ed. Oceanology of the Antarctic continental shelf. Washington, DC: American Geophysical Union, 273289.Google Scholar
Melini, D., Gegout, P., King, M., Marzeion, B. & Spada, G. 2015. On the rebound: modeling Earth’s ever-changing shape. Eos, 96, 10.1029/2015EO033387.Google Scholar
Mémin, A., Flament, T., Alizier, B., Watson, C. & Rémy, F. 2015. Interannual variation of the Antarctic ice sheet from a combined analysis of satellite gravimetry and altimetry data. Earth and Planetary Science Letters, 422, 150156.Google Scholar
Meredith, M.P. & King, J.C. 2005. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophysical Research Letters, 32, 10.1029/2005GL024042.Google Scholar
Milne, G.A. & Mitrovica, J.X. 1998. Postglacial sea-level change on a rotating Earth. Geophysical Journal International, 133, 10.1046/j.1365-246X.1998.1331455.x.CrossRefGoogle Scholar
Mitrovica, J.X., Tamisiea, M.E., Davis, J.L. & Milne, G.A. 2001. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409, 10261029.Google Scholar
Nield, G.A., Barletta, V.R., Bordoni, A., King, M.A., Whitehouse, P.L., Clarke, P.J., Domack, E., Scambos, T.A. & Berthier, E. 2014. Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading. Earth and Planetary Science Letters, 397, 3241.Google Scholar
Olivieri, M. & Spada, G. 2013. Intermittent sea-level acceleration. Global and Planetary Change, 109, 6472.Google Scholar
Peltier, W.R. 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32, 111149.Google Scholar
Peltier, W., Argus, D. & Drummond, R. 2015. Space geodesy constrains ice age terminal deglaciation: the global ICE-6G C (VM5a) model. Journal of Geophysical Research - Solid Earth, 120, 450487.Google Scholar
Plag, H.P. 2000. Arctic tide gauges: a status report. Report IOC/INF-1147. Paris: Intergovernmental Oceanographic Commission of UNESCO.Google Scholar
Purcell, A., Tregoning, P. & Dehecq, A. 2016. An assessment of the ICE6G C (VM5a) glacial isostatic adjustment model. Journal of Geophysical Research - Solid Earth, 121, 10.1002/2015JB012742.Google Scholar
Scambos, T., Hulbe, C. & Fahnestock, M. 2003. Climate-induced ice shelf disintegration in the Antarctic Peninsula. In Domack, E., Levente, A., Burnet A., Bindschadler, R., Convey P. & Kirby M., eds. Antarctic Peninsula climate variability: historical and paleoenvironmental perspectives. Washington, DC: American Geophysical Union, 7992.Google Scholar
Shepherd, A., Ivins, E.R., Geruo, A. & 44 others. 2012. A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189.CrossRefGoogle ScholarPubMed
Spada, G. 2016. Glacial isostatic adjustment and contemporary sea level rise: an overview. Surveys in Geophysics, 10.1007/s10712-016-9379-x.Google Scholar
Spada, G. & Galassi, G. 2012. New estimates of secular sea level rise from tide gauge data and GIA modelling. Geophysical Journal International, 191, 10671094.Google Scholar
Spada, G. & Stocchi, P. 2007. SELEN: a Fortran 90 program for solving the ‘sea-level equation’. Computers & Geosciences, 33, 538562.CrossRefGoogle Scholar
Spada, G., Olivieri, M. & Galassi, G. 2014. Anomalous secular sea-level acceleration in the Baltic Sea caused by isostatic adjustment. Annals of Geophysics, 57, 10.4401/ag-6548.Google Scholar
Sturges, W. & Hong, B.G. 2001. Decadal variability of sea level. In Douglas, B.C., Kearney, M.S. & Leatherman, S.P., eds. Sea level rise: history and consequences. San Diego, CA: Academic Press, 165180.Google Scholar
Torres, M.E., Colominas, M.A., Schlotthauer, G. & Flandrin, P. 2011. A complete ensemble empirical mode decomposition with adaptive noise. Proceedings of the Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference, 41444147.Google Scholar
Vaughan, D.G., Comiso, J.C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K. & Zhang, T. 2013. Observations: cryosphere. In Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M., eds. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 317382.Google Scholar
Velicogna, I. 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters, 36, 10.1029/2009GL040222.Google Scholar
White, W.B. & Peterson, R.G. 1996. An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature, 380, 699702.Google Scholar
Whitehouse, P.L., Bentley, M.J., Milne, G.A., King, M.A. & Thomas, I.D. 2012. A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea-level change and present-day uplift rates. Geophysical Journal International, 190, 14641482.Google Scholar
Wu, Z. & Huang, N.E. 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1, 10.1142/S1793536909000047.Google Scholar