Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T06:53:22.407Z Has data issue: false hasContentIssue false

The possible pollen cone of the Late Triassic conifer Heidiphyllum/Telemachus (Voltziales) from Antarctica

Published online by Cambridge University Press:  05 April 2011

Benjamin Bomfleur*
Affiliation:
Division of Paleobotany at the Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
Rudolph Serbet
Affiliation:
Division of Paleobotany at the Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
Edith L. Taylor
Affiliation:
Division of Paleobotany at the Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA
Thomas N. Taylor
Affiliation:
Division of Paleobotany at the Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA

Abstract

Fossil leaves of the Voltziales, an ancestral group of conifers, rank among the most common plant fossils in the Triassic of Gondwana. Even though the foliage taxon Heidiphyllum has been known for more than 150 years, our knowledge of the reproductive organs of these conifers still remains very incomplete. Seed cones assigned to Telemachus have become increasingly well understood in recent decades, but the pollen cones belonging to these Mesozoic conifers are rare. In this contribution we describe the first compression material of a voltzialean pollen cone from Upper Triassic strata of the Transantarctic Mountains. The cone can be assigned to Switzianthus Anderson & Anderson, a genus that was previously assumed to belong to an enigmatic group of pteridosperms from the Triassic Molteno Formation of South Africa. The similarities of cuticle and pollen morphology, together with co-occurrence at all known localities, indicate that Switzianthus most probably represents the pollen organ of the ubiquitous Heidiphyllum/Telemachus plant.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, H.M. 1978. Podozamites and associated cones and scales from the Upper Triassic Molteno Formation, Karoo Basin, South Africa. Palaeontologia Africana, 21, 5777.Google Scholar
Anderson, J.M.Anderson, H.M. 1989. Palaeoflora of southern Africa: Molteno Formation (Triassic). Vol. 2. Gymnosperms (excluding Dicroidium). Rotterdam: Balkema, 567 pp.Google Scholar
Anderson, J.M.Anderson, H.M. 2003. Heyday of the gymnosperms: systematics and biodiversity of the Late Triassic Molteno fructifications. Pretoria: National Botanical Institute, Strelitzia 15, 399 pp.Google Scholar
Arndt, S. 2002. Morphologie und Systematik ausgewählter Mesozoischer Koniferen. Palaeontographica, B262, 123.Google Scholar
Axsmith, B.J., Taylor, T.N.Taylor, E.L. 1998. Anatomically preserved leaves of the conifer Notophytum krauselii (Podocarpaceae) from the Triassic of Antarctica. American Journal of Botany, 85, 704713.Google Scholar
Balme, B.E. 1995. Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology, 87, 81323.CrossRefGoogle Scholar
Barrett, P.J. 1969. Stratigraphy and petrology of the mainly fluviatile Permian and Triassic Beacon rocks, Beardmore Glacier area, Antarctica. Columbus, OH: Ohio State University Research Foundation, Institute of Polar Studies, Report No. 34, 132 pp.Google Scholar
Barrett, P.J., Elliot, D.H.Lindsay, J.F. 1986. The Beacon Supergroup (Devonian–Triassic) and Ferrar Group (Jurassic) in the Beardmore Glacier area, Antarctica. Antarctic Research Series, 36, 339428.CrossRefGoogle Scholar
Cantrill, D.J., Drinnan, A.N.Webb, J.A. 1995. Late Triassic plant fossils from the Prince Charles Mountains, East Antarctica. Antarctic Science, 7, 5162.Google Scholar
Escapa, I.H., Decombeix, A.-L., Taylor, E.L.Taylor, T.N. 2010. Evolution and relationships of the conifer seed cone Telemachus: evidence from the Triassic of Antarctica. International Journal of Plant Sciences, 171, 560573.CrossRefGoogle Scholar
Farabee, M.J., Taylor, T.N.Taylor, E.L. 1989. Pollen and spore assemblages from the Falla Formation (Upper Triassic), central Transantarctic Mountains, Antarctica. Review of Palaeobotany and Palynology, 61, 101138.Google Scholar
Feistmantel, O. 1889. Übersichtliche Darstellung der geologisch-palaeontologischen Verhältnisse Süd-Afrikas. I. Theil. Die Karoo-Formation und die dieselbe unterlagernden Schichten. Abhandlungen der Königlichen Böhmischen Gesellschaft der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse VII, 3, 189.Google Scholar
Florin, R. 1938–45. Die Koniferen des Oberkarbons und des unteren Perms, I–VII. Palaeontographica, B85, 1729.Google Scholar
Grauvogel-Stamm, L. 1978. La flore du Grès à Voltzia (Buntsandstein Supérieur) des Vosges du Nord (France). Morphologie, anatomie, interprétations phylogénique et paléogéographique. Sciences Géologiques, Université Louis Pasteur de Strasbourg, Institut de Géologie, Mémoire, 50, 1225.Google Scholar
Grauvogel-Stamm, L.Schaarschmidt, F. 1979. Zur Morphologie und Taxonomie von Masculostrobus Seward und anderen Formgattungen peltater männlicher Koniferenblüten. Senckenbergiana Lethaea, 60, 137.Google Scholar
Hermsen, E.J., Taylor, T.N.Taylor, E.L. 2007. A voltzialean pollen cone from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 144, 113122.Google Scholar
Kyle, R.A.Schopf, J.M. 1982. Permian and Triassic palynostratigraphy of the Victoria Group, Transantarctic Mountains. In Craddock, C., ed. Antarctic geoscience. Madison, WI: University of Wisconsin Press, 649659.Google Scholar
Meyer-Berthaud, B.Taylor, T.N. 1991. A probable conifer with podocarpaceous affinities from the Triassic of Antarctica. Review of Palaeobotany and Palynology, 67, 179198.Google Scholar
Miller, C.N. Jr 1977. Mesozoic conifers. Botanical Review, 43, 218280.CrossRefGoogle Scholar
Morris, J. 1845. Fossil flora. In Strzelecki, P.E., ed. Physical descriptions of New South Wales and Van Diemens Land. London: Brown, Green and Longmans, 245250.Google Scholar
Nielsen, S.N. 2005. The Triassic Santa Juana Formation at the lower Biobío River, south central Chile. Journal of South American Earth Sciences, 19, 547562.CrossRefGoogle Scholar
Retallack, G.J. 1981. Middle Triassic megafossil plants from Long Gully, near Otematata, north Otago, New Zealand. Journal of the Royal Society of New Zealand, 11, 167200.Google Scholar
Rothwell, G.W.Mapes, G. 2001. Barthelia furcata gen.et sp. nov., with a review of Palaeozoic coniferophytes and a discussion of coniferophyte phylogeny. International Journal of Plant Sciences, 162, 637667.CrossRefGoogle Scholar
Rothwell, G.W., Mapes, G.Hernandez-Castillo, G.R. 2005. Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales). Taxon, 54, 733750.CrossRefGoogle Scholar
Schwendemann, A.B., Taylor, T.N., Taylor, E.L.Krings, M. 2010. Organization, anatomy, and fungal endophytes of a Triassic conifer embryo. American Journal of Botany, 97, 18731883.Google Scholar
Taylor, T.N., Taylor, E.L.Krings, M. 2009. Paleobotany: the biology and evolution of fossil plants. London: Academic Press, 1230 pp.Google Scholar
Yao, X., Taylor, T.N.Taylor, E.L. 1993. The Triassic seed cone Telemachus from Antarctica. Review of Palaeobotany and Palynology, 78, 269276.CrossRefGoogle Scholar
Yao, X., Taylor, T.N.Taylor, E.L. 1997. A taxodiaceous seed cone from the Triassic of Antarctica. American Journal of Botany, 84, 343354.Google Scholar