Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T18:09:44.096Z Has data issue: false hasContentIssue false

Microbial biomass and community structure changes along a soil development chronosequence near Lake Wellman, southern Victoria Land

Published online by Cambridge University Press:  15 December 2011

Jackie Aislabie*
Affiliation:
Landcare Research, Private Bag 3127, Hamilton, New Zealand
James Bockheim
Affiliation:
Department of Soil Sciences, University of Wisconsin, Madison, WI 53706-1299, USA
Malcolm Mcleod
Affiliation:
Landcare Research, Private Bag 3127, Hamilton, New Zealand
David Hunter
Affiliation:
Landcare Research, Private Bag 3127, Hamilton, New Zealand
Bryan Stevenson
Affiliation:
Landcare Research, Private Bag 3127, Hamilton, New Zealand
Gary M. Barker
Affiliation:
Department of Soil Sciences, University of Wisconsin, Madison, WI 53706-1299, USA

Abstract

Four pedons on each of four drift sheets in the Lake Wellman area of the Darwin Mountains were sampled for chemical and microbial analyses. The four drifts, Hatherton, Britannia, Danum, and Isca, ranged from early Holocene (10 ka) to mid-Quaternary (c. 900 ka). The soil properties of weathering stage, salt stage, and depths of staining, visible salts, ghosts, and coherence increase with drift age. The landforms contain primarily high-centred polygons with windblown snow in the troughs. The soils are dominantly complexes of Typic Haplorthels and Typic Haploturbels. The soils were dry and alkaline with low levels of organic carbon, nitrogen and phosphorus. Electrical conductivity was high accompanied by high levels of water soluble anions and cations (especially calcium and sulphate in older soils). Soil microbial biomass, measured as phospholipid fatty acids, and numbers of culturable heterotrophic microbes, were low, with highest levels detected in less developed soils from the Hatherton drift. The microbial community structure of the Hatherton soil also differed from that of the Britannia, Danum and Isca soils. Ordination revealed the soil microbial community structure was influenced by soil development and organic carbon.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aislabie, J., Broady, P.Saul, D. 2006a. Viable heterotropic bacteria from high altitude, high latitude soil of La Gorce Mountains (86°30′S, 147°W), Antarctica. Antarctic Science, 18, 313321.CrossRefGoogle Scholar
Aislabie, J.M., Jordan, S.Barker, G.M. 2008. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma, 144, 920.CrossRefGoogle Scholar
Aislabie, J., Chhour, K-L., Saul, D.J., Miyauchi, S., Ayton, J., Paetzold, R.F.Balks, M.R. 2006b. Dominant bacterial groups in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 30413056.CrossRefGoogle Scholar
Ayres, E., Nkem, J.N., Wall, D.H., Adams, B.J., Barrett, J.E., Simmons, B.L., Virginia, R.A.Fountain, A.G. 2010. Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biology, 33, 897907.CrossRefGoogle Scholar
Barrett, J.E., Virginia, R.A., Hopkins, D.W., Aislabie, J., Bargagli, R., Bockheim, J.G., Campbell, I.B., Lyons, W.B., Moorehead, D.L., Nkem, J.N., Sletten, R.S., Steltzer, H., Wall, D.H.Wallenstein, M.D. 2006. Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 30193034.CrossRefGoogle Scholar
Belbin, L. 1991. Semi-strong hybrid scaling, a new ordination algorithm. Journal of Vegetation Science, 2, 491496.CrossRefGoogle Scholar
Belbin, L. 1995. PATN Analysis Package. Canberra: CSIRO.Google Scholar
Blakemore, L.C., Searle, P.L.Daly, B.K. 1987. Methods for chemical analysis of soils. NZ Soil Bureau Scientific Report, No. 80, 103 pp.Google Scholar
Bockheim, J.G. 1990. Soil development rates in the Transantarctic Mountains. Geoderma, 47, 5977.CrossRefGoogle Scholar
Bockheim, J.G. 2002. Landform and soil development in the McMurdo Dry Valleys: a regional synthesis. Arctic, Antarctic & Alpine Research, 34, 308317.CrossRefGoogle Scholar
Bockheim, J.G.McLeod, M. 2006. Soil formation in Wright Valley, Antarctica since the late Neogene. Geoderma, 37, 109116.CrossRefGoogle Scholar
Bockheim, J.G., Wilson, S.C., Denton, G.H., Andersen, B.G.Stuiver, M. 1989. Late Quaternary ice surface fluctuations of Hatherton Glacier, Transantarctic Mountains. Quaternary Research, 31, 229254.CrossRefGoogle Scholar
Bölter, M. 2011. Soil development and soil biology on King George Island, Maritime Antarctica. Polish Polar Research, 32, 105116.CrossRefGoogle Scholar
Bölter, M., Blume, H.-P., Schneider, D.Beyer, L. 1997. Soil properties and distributions of invertebrates and bacteria from King George Island (Arctowski Station), Maritime Antarctic. Polar Biology, 18, 295304.Google Scholar
Bray, J.R.Curtis, J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecology Monographs, 27, 325349.CrossRefGoogle Scholar
Broady, P.A.Weinstein, R.N. 1998. Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarctic Science, 10, 376385.CrossRefGoogle Scholar
Brook, E.J., Kurz, M.D., Ackert, R. Jr, Denton, G.H., Brown, E.T., Raisbeck, G.M.Yiou, E. 1993. Chronology of Taylor Glacier advances in Arena Valley, Antarctica, using in-situ cosmogenic 3He and 10Be. Quaternary Research, 39, 1123.CrossRefGoogle Scholar
Cameron, R.E. 1972. Farthest south algae and associated bacteria. Phycologia, 11, 133139.CrossRefGoogle Scholar
Cameron, R.E., Lacy, G.H., Morelli, F.A.Marsh, J.B. 1971. Farthest south soil microbial and ecological investigations. Antarctic Journal of the United States, 6(4), 105106.Google Scholar
Campbell, I.B.Claridge, G.G.C. 1975. Morphology and age relationships of Antarctic soils. In Suggate, R.P. & Cresswell, M.M.,eds. Quaternary studies. Wellington: Royal Society of New Zealand, 8388.Google ScholarPubMed
Caruso, T., Hogg, I.D., Carapelli, A., Frati, F.Bargagli, R. 2009. Large-scale patterns in the distribution of Collembola (Hexapoda) species in Antarctic terrestrial ecosystems. Journal of Biogeography, 36, 879886.CrossRefGoogle Scholar
Claridge, G.G.C., Campbell, I.B., Stout, J.D., Dutch, M.E.Flint, E.A. 1971. The occurrence of soil organisms in the Scott Glacier region, Queen Maud Range, Antarctica. New Zealand Journal of Science, 14, 306312.Google Scholar
Connon, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C.Ponce, A.D. 2007. Bacterial diversity in hyperarid Atacama desert soils. Journal of Geophysical Research, 10.1029/2006JG000311.CrossRefGoogle Scholar
Cowan, D.A., Khan, N., Heath, C.Mutondo, M. 2010. Microbiology of Antarctic terrestrial soils and rocks. In Bej, A., Aislabie, J. & Atlas, R.M.,eds. Polar microbiology: the ecology, biodiversity and bioremediation potential of microorganisms in extremely cold environments. Boca Raton, FL: CRC Press, 129.Google Scholar
Dartnell, L.R., Hunter, S.J., Lovell, K.V., Coates, A.J.Ward, J.M. 2010. Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria. Astrobiology, 7, 717732.CrossRefGoogle Scholar
Demetras, N.J., Hogg, I.D., Banks, J.C.Adams, B.J. 2010. Latitudinal distribution and mitochondrial DNA (COI) variability of Stereotydeus spp. (Acari: Prostigmata) in Victoria Land and the central Transantarctic Mountains. Antarctic Science, 22, 749756.CrossRefGoogle Scholar
Feng, X., Simpson, A.J., Gregorich, E.G., Elberling, B., Hopkins, D., Sparrow, A.D., Novis, P.M., Greenfield, L.G.Simpson, M.J. 2010. Chemical characterization of microbial-dominated soil organic matter in the Garwood Valley, Antarctica. Geochimica et Cosmochimica Acta, 74, 64856498.CrossRefGoogle Scholar
Higgins, S.M., Hendy, C.H.Denton, G.H. 2000. Geochronology of Bonney drift, Taylor Valley, Antarctica: evidence for interglacial expansions of Taylor Glacier. Geografiska Annaler, 82A, 391410.CrossRefGoogle Scholar
Hodgson, D.A., Convey, P., Verleyen, E., Vyverman, W., McInnes, S.J., Sands, C.J., Fernández-Carazo, R., Wilmotte, A., De Wever, A., Peeters, K., Tavernier, I.Willems, A. 2010. The limnology and biology of the Dufek Massif, Transantarctic Mountains 82° South. Polar Science, 4, 197214.CrossRefGoogle Scholar
Hopkins, D.W., Sparrow, A.D., Gregorich, E.G., Elberling, B., Novis, P., Fraser, F., Scrimgeour, C., Dennis, P.G., Meier-Augenstein, W.Greenfield, L.G. 2009. Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environmental Microbiology, 11, 597608.CrossRefGoogle ScholarPubMed
Klassen, J.L. 2010. Phylogenetic and evolutionary patterns in microbial biosysnthesis are revealed by comparative genomics. PLos ONE, 5, e11257.CrossRefGoogle Scholar
Lauber, C.L., Hamady, M., Knight, R.Fierer, N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 51115120.CrossRefGoogle ScholarPubMed
Lester, E.D., Satomi, M.Ponce, A. 2007. Microflora of extreme arid Actama desert soils. Soil Biology & Biochemistry, 39, 704708.CrossRefGoogle Scholar
Parker, B.C., Boyer, S., Allnutt, F.C.T., Seaburg, K.G., Wharton, R.A. JrSimmons, G.M. Jr 1982. Soils from the Pensacola Mountains, Antarctica: physical, chemical and biological characteristics. Soil, Biology and Biochemistry, 14, 265271.CrossRefGoogle Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C.Broderson, W.D. eds. 2002. Field book for describing and sampling soils. Ver. 2.0. Lincoln, NE: National Soil Survey Center, National Resource Conservation Service, 228 pp.Google Scholar
Soil Survey Staff. 2010. Keys to soil taxonomy, 10th ed. Washington DC: USDA-NRCS, 341 pp.Google Scholar
Storey, B.C., Fink, D., Joy, K., Shulmeister, J., Riger-Kusk, M.Stevens, M.I. 2010. Cosmogenic nuclide exposure age constraints on the glacial history of the Lake Wellman area, Darwin Mountains, Antarctica. Antarctic Science, 14, 603618.CrossRefGoogle Scholar
Tscherko, D., Hammesfahr, U., Marx, M.-C.Kandeler, E. 2004. Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence. Soil Biology & Biochemistry, 36, 16851698.CrossRefGoogle Scholar
Vincent, W.F. 2000. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Science, 12, 374385.CrossRefGoogle Scholar
Wadham, J.L., Tranter, M., Hodson, A.J., Hodgkins, R., Bottrell, S., Cooper, R.Raiswell, R. 2010. Hydro-biogeochemical coupling beneath a large polythermal Arctic glacier: implications for subice sheet biogeochemistry. Journal of Geophysical Research, 10.1029/2009JF001602.CrossRefGoogle Scholar
Webster-Brown, J., Gall, M., Gibson, J., Wood, S.Hawes, I. 2010. The biochemistry of meltwater habitats in the Darwin Glacier region (80°S), Victoria Land, Antarctica. Antarctic Science, 22, 646661.CrossRefGoogle Scholar
White, D.C., Davis, W.M., Nickels, J.S., King, J.D.Bobbie, R.J. 1979. Determination of the sedimentary microbial biomass of extractable lipid phosphate. Oceologia, 40, 5162.CrossRefGoogle ScholarPubMed
Yergeau, E., Bokhurst, S., Huiskes, A.D.L., Boschker, H.T.S., Aerts, R.Kowalchuk, G.A. 2007. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiology Ecology, 59, 436451.CrossRefGoogle ScholarPubMed
Yergeau, E., Schoondermark-Stolk, S.A., Brodie, E.L., Dejean, S., Goncalves, O., Piceno, Y.M., Anderson, G.L.Kowalchuk, G.A. 2009. Environmental microarray analyses of Antarctic soil microbial communities. ISME Journal, 3, 340351.CrossRefGoogle ScholarPubMed