Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T10:55:33.485Z Has data issue: false hasContentIssue false

Interannual properties of the CO2 system in the Southern Ocean south of Australia

Published online by Cambridge University Press:  12 August 2009

H.E. Laika
Affiliation:
Institut de Modélisation et d’Analyses en Géo-Environnement et Santé, Université de Perpignan Via Domitia, EA 4218 - 52 avenue Paul Alduy, 66860 Perpignan, France
C. Goyet*
Affiliation:
Institut de Modélisation et d’Analyses en Géo-Environnement et Santé, Université de Perpignan Via Domitia, EA 4218 - 52 avenue Paul Alduy, 66860 Perpignan, France
F. Vouve
Affiliation:
Institut de Modélisation et d’Analyses en Géo-Environnement et Santé, Université de Perpignan Via Domitia, EA 4218 - 52 avenue Paul Alduy, 66860 Perpignan, France
A. Poisson
Affiliation:
Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN/IPSL), Université Pierre et Marie Curie, Paris, France
F. Touratier
Affiliation:
Institut de Modélisation et d’Analyses en Géo-Environnement et Santé, Université de Perpignan Via Domitia, EA 4218 - 52 avenue Paul Alduy, 66860 Perpignan, France
*
*corresponding author: cgoyet@univ_perp.fr

Abstract

In order to quantify the temporal variations of ocean properties, the MINERVE programme was designed to perform time-series measurements in the Southern Indian Ocean south of Australia. In the sub-Antarctic region (SAR, 48.5 ± 6.0°S), the mean CO2 flux increased from spring to summer from -6.8 mmol.m-2.d-1 in October 2005 to -9.9 mmol.m-2.d-1 in February 2006. In the Permanent Open Ocean Zone (POOZ, 57.5 ± 3.0°S), we observed lower pCO2 in summer than in spring (340 and 398 μatm, respectively). The mean CO2 flux showed large temporal variations from -0.2 mmol.m-2.d-1 in October 2005 to -8.2 mmol.m-2.d-1 in February 2006. The large temporal variation was associated with increased phytoplankton biomass. In the Continental Antarctic Zone (66.0 ± 1.0°S), the mean CO2 flux decreased from +14.9 mmol.m-2.d-1 in October 2005 to -8.4 mmol.m-2.d-1 in February 2006. In winter and spring, deep water mixing and seasonal sea-ice strongly increase pCO2sea above atmospheric level. In contrast, during summer, the effect of biological CO2 uptake decreased pCO2sea. Furthermore, these data allowed us to parameterize AT and CT as a function of temperature and salinity.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakker, D.C.E., De Baar, H.J.W.Bathmann, U.V. 1997. Changes of carbon dioxide in surface water during spring in the Southern Ocean. Deep-Sea Research II, 44, 91127.Google Scholar
Borges, A.V., Tilbrook, B., Metzl, N., Lenton, A.Delille, B. 2007. Inter-annual variability of the carbon dioxide oceanic sink south of Tasmania. Biogeosciences Discussion, 4, 36393671.Google Scholar
Brévière, E., Metzl, N., Poisson, A.Tilbrook, B. 2006. Changes of the oceanic CO2 sink in the Eastern Indian sector of the Southern Ocean. Tellus, 58B, 438446.CrossRefGoogle Scholar
Caldeira, K.Duffy, P.B. 2000. The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide. Science, 287, 620622.CrossRefGoogle ScholarPubMed
Chaigneau, A.Morrow, R. 2002. Surface temperature and salinity variation between Tasmania and Antarctica, 1993–1999. Journal of Geophysical Research, 107, 10.1029/2001JC000808.CrossRefGoogle Scholar
Chaigneau, A., Morrow, R.Rintoul, S.R. 2004. Seasonal and interannual evolution of the mixed layer in the Antarctic Zone south of Tasmania. Deep-Sea Research I, 51, 20472072.CrossRefGoogle Scholar
Conway, T.J., Tans, P.P., Waterman, L.S., Thoning, K.W., Kitzis, D.R., Masarie, K.A.Zhang, N. 1994. Evidence for interannual variability of carbon cycle from NOAA/climate monitoring and diagnostic laboratory global air sampling network. Journal of Geophysical Research, 99, 22 83122 855.CrossRefGoogle Scholar
Copin-Montégut, C. 1988. A new formula for the effect of temperature on the partial pressure of CO2 in seawater. Marine Chemistry, 25, 2937.CrossRefGoogle Scholar
Copin-Montégut, C. 1989. A new formula for the effect of temperature on the partial pressure of CO2 in seawater. Corrigendum. Marine Chemistry, 27, 143144.Google Scholar
Dickson, G.A.Goyet, C.eds. 1994. Handbook of methods for analysis of various parameters of the carbon dioxide system in seawater, version 2. Oak Ridge, TN: US Department of Energy, Oak Ridge National Laboratory, ORNL/CDIAC-74.Google Scholar
Edmond, J.M. 1970. High precision determination of titration of alkalinity and total CO2 of seawater by potentiometric titration. Deep-Sea Research, 17, 737750.Google Scholar
Feely, R.A., Sabine, C.L., Takahashi, T.Wanninkhof, R. 2001. Uptake and storage of carbon dioxide in the ocean: the global CO2 survey. Oceanography, 14, 1832.CrossRefGoogle Scholar
Goyet, C.Brewer, P.G. 1993. Biochemical properties of the oceanic carbon cycle. In Willebrand, J.&Anderson, D.L.T., eds. Modeling oceanic climate interactions. Berlin: Springer, 271297.CrossRefGoogle Scholar
Goyet, C.Poisson, A. 1989. New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Research, 36, 16351654.CrossRefGoogle Scholar
Goyet, C., Beauverger, C., Brunet, C.Poisson, A. 1991. Distribution of carbon dioxide partial pressure in surface waters of the southwest Indian Ocean. Tellus, 43B, 111.Google Scholar
Goyet, C., Millero, F.J., Poisson, A.Shafer, D.K. 1993. Temperature dependence of CO2 fugacity in seawater. Marine Chemistry, 44, 205219.Google Scholar
Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K.Johnson, C.A.eds. 2001. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 892 pp.Google Scholar
Inoue, H.Y.Ishii, M. 2005. Variation and trends of CO2 in the surface seawater in the Southern Ocean south of Australia between 1969 and 2002. Tellus, 57B, 5869.Google Scholar
Inoue, H.Y., Ishii, M., Matsueda, H., Saito, S., Midorikawa, T.Nemoto, K. 1999. MRI measurements of partial pressure of CO2 in surface water of the Pacific during 1968 to 1970: re-evaluation and comparison of data with those of the 1980s and 1990s. Tellus, 51B, 830848.Google Scholar
Inoue, H.Y., Ishii, M., Matsueda, H., Ishii, H., Fushimi, K., Hitrota, M., Asanuma, I.Takasugi, Y. 1995. Long-term trend of the partial pressure of carbon dioxide (pCO2) in surface water of the western North Pacific, 1984–1993. Tellus, 47B, 391413.CrossRefGoogle Scholar
Ishii, M., Inoue, H.Y.Matsueda, H. 2002. Net community production in the marginal ice zone and its importance for the variability of the oceanic pCO2 in the Southern Ocean south of Australia. Deep-Sea Research II, 49, 16911706.CrossRefGoogle Scholar
Jabaud-Jan, A., Metzl, N., Brunet, C., Poisson, A.Schauer, B. 2004. Interannual variability of the carbon dioxide system in the Southern Indian Ocean (20°S–60°S): the impact of a warm anomaly in austral summer 1998. Global Biogeochemical Cycles, 18, 10.1029/2002GB002017.Google Scholar
Kostianoy, A.G., Ginzburg, A.L., Frankignoulle, M.Delille, B. 2004. Fronts in the Southern Indian Ocean as inferred from sea surface temperature data. Journal of Marine Systems, 45, 5573.CrossRefGoogle Scholar
Lee, K., Wanninkhof, R., Takahashi, T., Doney, S.C.Feely, R.A. 1998. Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature, 396, 155159.Google Scholar
Lee, K., Tong, L.T., Millero, F.J., Sabine, C.L., Dickson, A.G., Goyet, C., Oark, G.-H., Wanninkhof, R., Feely, R.A.Key, R.M. 2006. Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophysical Research Letters, 33, 15.CrossRefGoogle Scholar
Lewis, E.R.Wallace, D.W.R. 1998. Program developed for CO2 system calculations. Oak Ridge, TN: Oak Ridge National Laboratory, ORNL/CDIAC-105.CrossRefGoogle Scholar
Matear, R.J.Hirst, A.C. 1999. Climate change feedback on the future oceanic CO2 uptake. Tellus, 51B, 722733.CrossRefGoogle Scholar
Mehrbach, C., Culberson, C.H., Hawley, J.E.Pytkowicz, R.M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18, 879907.CrossRefGoogle Scholar
Metzl, N., Tilbrook, B.Poisson, A. 1999. The annual fCO2 cycle and the air-sea CO2 flux in the sub-Antarctic Ocean. Tellus, 51B, 849861.CrossRefGoogle Scholar
Metzl, N., Poisson, A., Louanchi, F., Brunet, C., Shauer, B.Brès, B. 1995. Spatio-temporal distribution of air-sea fluxes of CO2 in the Indian and Antarctic oceans. Tellus, 47B, 5669.CrossRefGoogle Scholar
Millero, F.J., Lee, K.Roche, P.M. 1998. Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry, 60, 111130.Google Scholar
Plattner, G.-K., Joos, F., Stoccker, T.F.Marchal, O. 2001. Feedback mechanisms and sensitivities of ocean carbon uptake ubder global warming. Tellus, 53B, 564592.Google Scholar
Poisson, A.Chen, C.-T.A. 1987. Why is little anthropogenic CO2 in Antarctic Bottom water? Deep-Sea Research, 34, 12551275.Google Scholar
Poisson, A., Metzl, N., Brunet, C., Schauer, B., Bres, B., Ruiz-Pino, D.Louanchi, F. 1993. Variability of sources and sinks of CO2 in the Western Indian and Southern Ocean during the year 1991. Journal of Geophysical Research, 98, 22 75922 778.CrossRefGoogle Scholar
Rintoul, R.S., Donjuy, J.-R.Roemnich, D.H. 1997. Seasonal evaluation of upper ocean thermal structure between Tasmania and Antarctica. Deep Sea Research, 44, 11851202.Google Scholar
Roy, R.N., Roy, L.N., Vogel, K.M., Porter-Moore, C., Pearson, T.Good, C.E. 1993. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperature 0 to 45°C. Marine Chemistry, 42, 249267.Google Scholar
Sabine, C.L., Feely, R.A., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.-H., Kozyr, A., Ono, T.Rios, A.F. 2004. The oceanic sink for anthropogenic CO2. Science, 305, 367371.Google Scholar
Siegenthaler, U.Sarmiento, J.L. 1993. Atmospheric carbon dioxide and the ocean. Nature, 365, 119125.Google Scholar
Sokolov, S.Rintoul, R.S. 2002. Structure of southern ocean fronts at 140°E. Journal of Marine Systems, 37, 151184.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M.Miller, H.L., eds. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 996 pp.Google Scholar
Takahashi, T., Olafsson, J., Goddard, G.J., Chipman, W.D.Sutherland, C.S. 1993. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochemical Cycles, 7, 843878.CrossRefGoogle Scholar
Takahashi, T., Sutherland, S.C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R.A., Sabine, C., Olafsson, J.Noijri, Y. 2002. Global sea-air CO2 flux based on climatologically surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research II, 49, 16011622.CrossRefGoogle Scholar
Thomas, H., Bozec, Y., Elkalay, K., De Baar, H.J.W., Borges, A.V.Schiettecatte, L.-S. 2005. Controls of the surface water partial pressure of CO2 in the North Sea. Biogeosciences, 2, 323334.CrossRefGoogle Scholar
Volk, T.Hoffert, M.I. 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. Geophysical Monograph, 32, 99110.Google Scholar
Wanninkhof, R.H.McGillis, W. 1999. A cubic relationship between air-sea CO2 exchange and wind speed. Journal of Geophysical Research, 26, 18891892.Google Scholar
Weiss, R.F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2, 203215.Google Scholar
Weiss, R.F., Jahne, R.A.Keeling, C.D. 1982. Seasonal effects of temperature and salinity on the partial pressure and flux of CO2 in seawater. Nature, 300, 511513.CrossRefGoogle Scholar
Wong, C.S., Chan, Y.-H., Page, J.S., Smith, G.E., Bellegay, R.D.Iseki, K. 1995. Geographical, seasonal and interannual variations of air-sea CO2 exchange in the subtropical pacific surface water during 1983–1988 (I). Variabilities of oceanic fCO2. Tellus, 47B, 414430.CrossRefGoogle Scholar