Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T16:58:12.225Z Has data issue: false hasContentIssue false

Hydrogeochemical characteristics at Cape Lamb, Vega Island, Antarctic Peninsula

Published online by Cambridge University Press:  13 June 2012

L. Moreno*
Affiliation:
Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain
A. Silva-Busso
Affiliation:
Instituto Nacional de Agua, Empalme J. Newbery km 1, 620, Ezeiza, Buenos Aires, Argentina
J. López-Martínez
Affiliation:
Facultad de Ciencias Universidad Autónoma de Madrid, 28049 Madrid, Spain
J.J. Durán-Valsero
Affiliation:
Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain
C. Martínez-Navarrete
Affiliation:
Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain
J.A. Cuchí
Affiliation:
Escuela Politécnica de Huesca, Universidad de Zaragoza, Carretera de Cuarte s/n, 22071 Huesca, Spain
E. Ermolin
Affiliation:
Instituto Antártico Argentino, Cerrito 1248, Buenos Aires, Argentina

Abstract

Environmental changes in the northern Antarctic Peninsula provide a sensitive local indicator of climate warming. A consequence of these changes is the activation of surface and subsurface hydrological cycles in areas where water, in colder conditions, would remain frozen. This paper analyses the effects of hydrological cycle activation at Cape Lamb, Vega Island. The conclusions are based on hydrochemistry and isotope interpretation of 51 representative water samples from precipitation, streams, lakes, ice, snow and groundwater. Based on these results relationships between the different components of the hydrological cycle are proposed. This paper highlights the important contribution of groundwater to surface water chemistry, the disconnection of the lakes from the overall flow, the lack of an ocean spray signature in surface water and groundwater and the significant influence of windblown dust in the composition of the analysed waters.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appello, C.A.J.Postma, D. 2005. Geochemistry, groundwater and pollution, 2nd ed. Rotterdam: A.A. Balkema, 649 pp.Google Scholar
Aristarain, A.J.Delmas, R.J. 2002. Snow chemistry measurements on James Ross Island (Antarctic Peninsula) showing sea-salt aerosol modifications. Atmospheric Environment, 36, 765772.CrossRefGoogle Scholar
Bargagli, R. 2000. Trace metals in Antarctica related to climate change and increasing human impact. Environmental Contamination and Toxicology, 166, 129173.Google ScholarPubMed
Benassai, S., Becagli, S., Gragnani, R., Magand, O., Proposito, M., Fattori, I., Traversi, R.Udsi, R. 2005. Sea spray deposition in Antarctic coastal and plateau areas from ITASE traverses. Annals of Glaciology, 41, 3240.CrossRefGoogle Scholar
Bertler, N., Mayewski, P.A., Aristarain, A.et al. 2005. Snow chemistry across Antarctica. Annals of Glaciology, 41, 167179.CrossRefGoogle Scholar
Broady, P.A.Weinstein, R.N. 1998. Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarctic Science, 10, 376385.CrossRefGoogle Scholar
Caulkett, A.P.Ellis-Evans, J.C. 1997. Chemistry of streams of Signy Island, Maritime Antarctic: sources of major ions. Antarctic Science, 9, 311.CrossRefGoogle Scholar
Chinn, T.H.J. 1981. Hydrology and climate in the Ross Sea area. Journal of the Royal Society of New Zealand, 11, 373386.CrossRefGoogle Scholar
Claridge, G.G.C.Campbell, I.B. 1977. The salts in Antarctic soils, their distribution and relationship to soil process. Soil Science, 123, 377384.CrossRefGoogle Scholar
Craig, H. 1961. Isotopic variations in meteoric waters. Science, 133, 17021703.CrossRefGoogle ScholarPubMed
De Mora, S.J., Whitehead, R.F.Gregory, M. 1991. Aqueous geochemistry of major constituents in the Alph River and tributaries in Walcott Bay, Victoria Land, Antarctica. Antarctic Science, 3, 7386.CrossRefGoogle Scholar
Ermolin, E., De Angelis, H.Skvarca, P. 2002. Mapping of permafrost on Vega Island, Antarctic Peninsula, using satellite images and aerial photography. Annals of Glaciology, 34, 184188.CrossRefGoogle Scholar
Fernandoy, F., Meyer, H., Oerter, H., Wilhelms, F., Graf, W.Schwander, J. 2010. Temporal and spatial variation of stable-isotope ratios and accumulation rates in the hinterland of Neumayer station, East Antarctica. Journal of Glaciology, 56, 198.CrossRefGoogle Scholar
French, H.M. 2007. The periglacial environment, 3rd ed. Chichester: John Wiley & Sons, 458 pp.CrossRefGoogle Scholar
Greenfield, L.G. 1992. Precipitation nitrogen at maritime Signy Island and continental Cape Bird, Antarctica. Polar Biology, 11, 649653.CrossRefGoogle Scholar
Hofstee, E.H., Dave, I., Campbell, M.R.Aislabie, J. 2006. Groundwater characteristics at Seabee Hook, Cape Hallett, Antarctica. Antarctic Science, 18, 487495.CrossRefGoogle Scholar
Kane, D.L.Yang, D. 2004. Overview of water balance determinations for high latitude watersheds. In Kane, D.L.&Yang, D.,eds. Northern research basins water balance. Wallingford: International Association of Hydrological Sciences, IAHS Publication 290, 271 pp.Google Scholar
Kaup, E.Burgess, J.S. 2002. Surface and subsurface flows of nutrients in natural and human impacted catchments on Broknes, Larsemann Hills, Antarctica. Antarctic Science, 14, 343352.CrossRefGoogle Scholar
King, J.C., Turner, J., Marshall, G.J., Connolley, W.M.Lachlan-Cope, T.A. 2004. Antarctic Peninsula climate variability and its causes as revealed by analysis of instrumental records. Antarctic Research Series, 79, 1730.Google Scholar
Kreutz, K.J.Mayewski, P.A. 1999. Spatial variability of Antarctic surface snow glaciochemistry: implications for palaeoatmospheric circulation reconstructions. Antarctic Science, 11, 105118.CrossRefGoogle Scholar
Marenssi, S., Salani, F.Santillana, S. 2001. Geología del Cabo Lamb, Isla Vega, Península Antártica. Instituto Antártico Argentino, Contribución, 530, 143.0Google Scholar
Michel, F.A.van Everdingen, R.O. 1994. Changes in hydrogeologic regimes in permafrost regions due to climatic change. Permafrost and Periglacial Processes, 5, 191195.CrossRefGoogle Scholar
Mori, J., Fukui, K., Sone, T., Strelin, J.Torielli, C. 2007. Internal structure of stone-banked lobes and terraces on Rink Plateau, James Ross Island, Antarctic Peninsula region. Polish Polar Research, 28, 2330.Google Scholar
Pirrie, D., Crame, A.Riding, J. 1991. Late Cretaceous stratigraphy and sedimentology of Cape Lamb, Vega Island, Antarctica. Cretaceous Research, 12, 227258.CrossRefGoogle Scholar
Reynolds, J.M. 1981. The distribution of mean annual temperatures in the Antarctic Peninsula. British Antarctic Survey Bulletin, No. 54, 123133.Google Scholar
Rinaldi, C.A. 1982. The Upper Cretaceous in the James Ross Island Group. In Craddock, C., ed. Antarctic geoscience. Madison, WI: University of Wisconsin Press, 331337.Google Scholar
Rozanski, K., Araguds-Araguds, L.Gonfiantini, R. 1993. Isotopic patterns in modem global precipitation. In Swart, P.K., Lohman, K.C., McKenzie, J. & Savin, S. eds. Climate change in continental isotopic records. Washington DC: American Geophysical Union, Geophysical Monographs, 78, 136.Google Scholar
Rudolph, E.D. 1963. Vegetation of Hallett Station area, Victoria Land, Antarctica. Ecology, 44, 585586.CrossRefGoogle Scholar
Schlosser, E., Oerter, H., Masson-Delmotte, V.Reijmer, C. 2008. Atmospheric influence on the deuterium excess signal in polar firm: implications for ice-core interpretation. Journal of Glaciology, 54, 117124.CrossRefGoogle Scholar
Silva-Busso, A., Moreno, L., Durán, J.J., Ermolin, E., López-Martínez, J., Cuchí, J.A.Martínez-Navarrete, C. 2010. Análisis de la estructura del talik de un lago profundo en la Isla Vega, Península Antártica. Geogaceta, 49, 3538.Google Scholar
Smith, R.I.L. 1984. Terrestrial plant biology of the sub-Antarctic and Antarctic. In Laws, R.M.,ed. Antarctic ecology, vol. 1. London: Academic Press, 61162.Google Scholar
Snape, I., Riddle, M.J., Stark, J.S., Cole, C.M., King, C.K., Duquesne, S.Gore, D.B. 2001. Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Record, 37, 199214.CrossRefGoogle Scholar
Tolstikhin, N.I. 1941. Podzemnye vody merzloi zony litosfery. Moscow: Gosgeolizdat, 201 pp. [Groundwater in the frozen zone of the lithosphere].Google Scholar
Turner, J.S., Colwell, R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Reid, P.A.Lagovkina, S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279294.CrossRefGoogle Scholar
Uemura, R., Matsui, Y., Yoshimura, K., Motoyama, H.Yoshida, N. 2008. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. Journal of Geophysical Research, 10.1029/2008JD010209.CrossRefGoogle Scholar
Van Reeuwijk, L.P. 2002. Procedures for soil analysis, 6th ed. Wageningen: ISRIC (International Soil Reference and Information Centre), 120 pp.Google Scholar
Ward, N.J. 2004. Sulfide oxidation in some acid sulfate soil materials. PhD thesis, Southern Cross University, NSW, 168 pp. [Unpublished.].CrossRefGoogle Scholar
Warneck, P. 1991. Chemistry of the natural atmosphere. International Geophysics Series, vol. 41. San Diego: Academic Press, 757 pp.Google Scholar
Woo, M-K.Carey, S.K. 1998. Permafrost, seasonal frost and slope hydrology, Central Wolf Creek Basin, Yukon. In Pomeroy, J.W.&Granger, R.J.,eds. Wolf Creek Research Basin: hydrology, ecology and environment. Saskatoon, SK: National Water Research Institute, 4553.Google Scholar
Woo, M-K., Kane, D.L., Carey, S.K.Yang, D. 2008. Progress in permafrost hydrology in the new milennium. Permafrost and Periglacial Processes, 19, 237254.CrossRefGoogle Scholar