Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T05:35:28.006Z Has data issue: false hasContentIssue false

Bioresorbable Materials and Their Application in Electronics

Published online by Cambridge University Press:  28 October 2017

Xian Huang
Affiliation:
Tianjin University

Summary

Bioresorbable electronics that can dissolve away in aqueous environments and generate biologically safe products offer a revolutionary solution to replace the built-to-last electronics predominantly used in implanted devices and electronic gadgets. Their use can reduce the risk of surgical complications by minimizing the number of necessary surgeries, and prevent production of electronic waste by allowing rapid device recycling. This Element presents bioresorbable materials such as metals, polymers, inorganic compounds, and semiconductors that have been used to construct electronic devices, and analyzes their unique dissolution behaviors and biological effects. These materials are combined to yield representative devices including passive and active components and functional systems.
Get access
Type
Element
Information
Online ISBN: 9781108290685
Publisher: Cambridge University Press
Print publication: 16 November 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eberhart, R. C., Su, S. H., Nguyen, K. T., Zilberman, M., Tang, L., Nelson, K. D., and Frenkel, P., “Bioresorbable polymeric stents: current status and future promise,” J Biomater Sci Polym Ed, 14(4), pp. 299312, 2003.Google Scholar
Ormiston, J. A., Serruys, P. W., Regar, E., Dudek, D., Thuesen, L., Webster, M. W. I., Onuma, Y., Garcia-Garcia, H. M., McGreevy, R., and Veldhof, S., “A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial,” The Lancet, 371(9616), pp. 899907, 2008.Google Scholar
Simon, J., Ricci, J., and Di Cesare, P., “Bioresorbable fracture fixation in orthopedics: a comprehensive review. Part I. Basic science and preclinical studies,” American Journal of Orthopedics (Belle Mead, NJ), 26(10), pp. 665671, 1997.Google Scholar
Ylikontiola, L., Sundqvuist, K., Sandor, G. K., Törmälä, P., and Ashammakhi, N., “Self-reinforced bioresorbable poly-L/DL-lactide [SR-P (L/DL) LA] 70/30 miniplates and miniscrews are reliable for fixation of anterior mandibular fractures: a pilot study,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 97(3), pp. 312317, 2004.Google Scholar
Gogas, B. D., Farooq, V., Onuma, Y., and Serruys, P. W., “The ABSORB bioresorbable vascular scaffold: an evolution or revolution in interventional cardiology?,” Hellenic J Cardiol, 53(4), pp. 301309, 2012.Google Scholar
Abbah, S. A., Lam, C. X. L., Hutmacher, D. W., Goh, J. C. H., and Wong, H.-K., “Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery,” Biomaterials, 30(28), pp. 50865093, 2009.CrossRefGoogle Scholar
Gresser, J., Lewandrowski, K.-U., Trantolo, D., Wise, D., and Hsu, Y.-Y., “Soluble Calcium Salts in Bioresorbable Bone Grafts,” in Biomaterials Engineering and Devices: Human Applications, Wise, D., Trantolo, D., Lewandrowski, K.-U., Gresser, J., Cattaneo, M., and Yaszemski, M., Eds., Humana Press, 2000, pp. 171188.Google Scholar
Bergmann, C., Lindner, M., Zhang, W., Koczur, K., Kirsten, A., Telle, R., and Fischer, H., “3D printing of bone substitute implants using calcium phosphate and bioactive glasses,” Journal of the European Ceramic Society, 30(12), pp. 25632567, 2010.Google Scholar
Guerra, G. D., Cerrai, P., Tricoli, M., Maltinti, S., Anguillesi, I., and Barbani, N., “Fibers by bioresorbable poly(ester-ether-ester)s as potential suture threads: a preliminary investigation,” J Mater Sci Mater Med, 10(10/11), pp. 659662, 1999.CrossRefGoogle ScholarPubMed
Schranz, D., Zartner, P., Michel-Behnke, I., and Akintürk, H., “Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn,” Catheterization and Cardiovascular Interventions, 67(5), pp. 671673, 2006.Google Scholar
Woodruff, M. A. and Hutmacher, D. W., “The return of a forgotten polymer – Polycaprolactone in the 21st century,” Progress in Polymer Science, 35(10), pp. 12171256, 2010.CrossRefGoogle Scholar
Auras, R., Harte, B., and Selke, S., “An overview of polylactides as packaging materials,” Macromolecular Bioscience, 4(9), pp. 835864, 2004.CrossRefGoogle ScholarPubMed
Pang, X., Zhuang, X., Tang, Z., and Chen, X., “Polylactic acid (PLA): Research, development and industrialization,” Biotechnology Journal, 5(11), pp. 11251136, 2010.Google Scholar
Kadajji, V. G. and Betageri, G. V., “Water soluble polymers for pharmaceutical applications,” Polymers, 3(4), pp. 19722009, 2011.CrossRefGoogle Scholar
Hwang, S.-W., Tao, H., Kim, D.-H., Cheng, H., Song, J.-K., Rill, E., Brenckle, M. A., Panilaitis, B., Won, S. M., Kim, Y.-S., Song, Y. M., Yu, K. J., Ameen, A., Li, R., Su, Y., Yang, M., Kaplan, D. L., Zakin, M. R., Slepian, M. J., Huang, Y., Omenetto, F. G., and Rogers, J. A., “A physically transient form of silicon electronics,” Science, 337(6102), pp. 16401644, 2012.Google Scholar
Okazaki, Y. and Gotoh, E., “Metal release from stainless steel, Co–Cr–Mo–Ni–Fe and Ni–Ti alloys in vascular implants,” Corrosion Science, 50(12), pp. 34293438, 2008.Google Scholar
Greene, A. H., Bumgardner, J. D., Yang, Y., Moseley, J., and Haggard, W. O., “Chitosan-coated stainless steel screws for fixation in contaminated fractures,” Clinical Orthopaedics and Related Research, 466(7), pp. 16991704, 2008.Google Scholar
Nie, F., Wang, S., Wang, Y., Wei, S., and Zheng, Y., “Comparative study on corrosion resistance and in vitro biocompatibility of bulk nanocrystalline and microcrystalline biomedical 304 stainless steel,” Dental Materials, 27(7), pp. 677683, 2011.Google Scholar
Grądzka-Dahlke, M., Dąbrowski, J., and Dąbrowski, B., “Modification of mechanical properties of sintered implant materials on the base of Co–Cr–Mo alloy,” Journal of Materials Processing Technology, 204(1), pp. 199205, 2008.Google Scholar
Teigen, K. and Jokstad, A., “Dental implant suprastructures using cobalt–chromium alloy compared with gold alloy framework veneered with ceramic or acrylic resin: a retrospective cohort study up to 18 years,” Clinical Oral Implants Research, 23(7), pp. 853860, 2012.Google Scholar
Witzleb, W.-C., Ziegler, J., Krummenauer, F., Neumeister, V., and Guenther, K.-P., “Exposure to chromium, cobalt and molybdenum from metal-on-metal total hip replacement and hip resurfacing arthroplasty,” Acta Orthopaedica, 77(5), pp. 697705, 2006.Google Scholar
Liu, X., Chu, P. K., and Ding, C., “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Materials Science and Engineering: R: Reports, 47(3), pp. 49121, 2004.Google Scholar
Elias, C., Lima, J., Valiev, R., and Meyers, M., “Biomedical applications of titanium and its alloys,” JOM, 60(3), pp. 4649, 2008.Google Scholar
Geetha, M., Singh, A., Asokamani, R., and Gogia, A., “Ti based biomaterials, the ultimate choice for orthopaedic implants–a review,” Progress in Materials Science, 54(3), pp. 397425, 2009.Google Scholar
Godara, A., Raabe, D., and Green, S., “The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications,” Acta Biomaterialia, 3(2), pp. 209220, 2007.Google Scholar
Thomas, J. W., Michael, C. W., Janice, L. M., Rachel, L. P., and Jeremiah, U. E., “Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants,” Nanotechnology, 15(1), p. 48, 2004.Google Scholar
Adams, D., Williams, D. F., and Hill, J., “Carbon fiber-reinforced carbon as a potential implant material,” Journal of Biomedical Materials Research, 12(1), pp. 3542, 1978.Google Scholar
Dalal, A., Pawar, V., McAllister, K., Weaver, C., and Hallab, N. J., “Orthopedic implant cobalt‐alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy‐based particles in vitro, in human osteoblasts, fibroblasts, and macrophages,” Journal of Biomedical Materials Research Part A, 100(8), pp. 21472158, 2012.CrossRefGoogle ScholarPubMed
Shettlemore, M. G. and Bundy, K. J., “Toxicity measurement of orthopedic implant alloy degradation products using a bioluminescent bacterial assay,” J Biomed Mater Res, 45(4), pp. 395403, 1999.Google Scholar
George, C. M., Howard, D. R., Allan, I. L., Claire-Anne, G., Robert, E. G., and Ravi, V. B., “Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration,” Journal of Neural Engineering, 6(5), p. 056003, 2009.Google Scholar
Hallab, N. J., Cunningham, B. W., and Jacobs, J. J., “Spinal implant debris-induced osteolysis,” Spine, 28(20S), pp. S125S138, 2003.Google Scholar
Muller, K. and Valentine-Thon, E., “Hypersensitivity to titanium: clinical and laboratory evidence,” Neuro Endocrinol Lett, 27 Suppl. 1, pp. 3135, 2006.Google Scholar
Hallab, N. J. and Jacobs, J. J., “Biologic effects of implant debris,” Bulletin of the NYU Hospital for Joint Diseases, 67(2), p. 182, 2009.Google Scholar
Kim, D.-H., Kim, Y.-S., Amsden, J., Panilaitis, B., Kaplan, D. L., Omenetto, F. G., Zakin, M. R., and Rogers, J. A., “Silicon electronics on silk as a path to bioresorbable, implantable devices,” Applied Physics Letters, 95(13), p. 133701, 2009.Google Scholar
Kim, D.-H., Viventi, J., Amsden, J. J., Xiao, J., Vigeland, L., Kim, Y.-S., Blanco, J. A., Panilaitis, B., Frechette, E. S., Contreras, D., Kaplan, D. L., Omenetto, F. G., Huang, Y., Hwang, K.-C., Zakin, M. R., Litt, B., and Rogers, J. A., “Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics,” Nat Mater, 9(6), pp. 511517, 2010.Google Scholar
Mannoor, M. S., Tao, H., Clayton, J. D., Sengupta, A., Kaplan, D. L., Naik, R. R., Verma, N., Omenetto, F. G., and McAlpine, M. C., “Graphene-based wireless bacteria detection on tooth enamel,” Nat Commun, 3, p. 763, 2012.Google Scholar
Lawrence, B. D., Cronin-Golomb, M., Georgakoudi, I., Kaplan, D. L., and Omenetto, F. G., “Bioactive silk protein biomaterial systems for optical devices,” Biomacromolecules, 9(4), pp. 12141220, 2008.Google Scholar
Yin, L., Cheng, H., Mao, S., Haasch, R., Liu, Y., Xie, X., Hwang, S.-W., Jain, H., Kang, S.-K., Su, Y., Li, R., Huang, Y., and Rogers, J. A., “Dissolvable metals for transient electronics,” Advanced Functional Materials, 24(5), pp. 645658, 2014.CrossRefGoogle Scholar
Makadia, H. K. and Siegel, S. J., “Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier,” Polymers (Basel), 3(3), pp. 13771397, 2011.Google Scholar
Kang, S.-K., Hwang, S.-W., Cheng, H., Yu, S., Kim, B. H., Kim, J.-H., Huang, Y., and Rogers, J. A., “Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics,” Advanced Functional Materials, 24(28), pp. 44274434, 2014.Google Scholar
Dagdeviren, C., Hwang, S.-W., Su, Y., Kim, S., Cheng, H., Gur, O., Haney, R., Omenetto, F. G., Huang, Y., and Rogers, J. A., “Transient, biocompatible electronics and energy harvesters based on ZnO,” Small, 9(20), pp. 33983404, 2013.Google Scholar
Hwang, S.-W., Kang, S.-K., Huang, X., Brenckle, M. A., Omenetto, F. G., and Rogers, J. A., “Materials for programmed, functional transformation in transient electronic systems,” Advanced Materials, 27(1), pp. 4752, 2015.Google Scholar
Hwang, S.-W., Huang, X., Seo, J.-H., Song, J.-K., Kim, S., Hage-Ali, S., Chung, H.-J., Tao, H., Omenetto, F. G., Ma, Z., and Rogers, J. A., “Materials for bioresorbable radio frequency electronics,” Advanced Materials, 25(26), pp. 35263531, 2013.Google Scholar
Hwang, S.-W., Song, J.-K., Huang, X., Cheng, H., Kang, S.-K., Kim, B. H., Kim, J.-H., Yu, S., Huang, Y., and Rogers, J. A., “High-performance biodegradable/transient electronics on biodegradable polymers,” Advanced Materials, 26(23), pp. 39053911, 2014.Google Scholar
Son, D., Lee, J., Lee, D. J., Ghaffari, R., Yun, S., Kim, S. J., Lee, J. E., Cho, H. R., Yoon, S., Yang, S., Lee, S., Qiao, S., Ling, D., Shin, S., Song, J.-K., Kim, J., Kim, T., Lee, H., Kim, J., Soh, M., Lee, N., Hwang, C. S., Nam, S., Lu, N., Hyeon, T., Choi, S. H., and Kim, D.-H., “Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases,” ACS Nano, 9(6), pp. 59375946, 2015.Google Scholar
Lee, C. H., Kim, H., Harburg, D. V., Park, G., Ma, Y., Pan, T., Kim, J. S., Lee, N. Y., Kim, B. H., Jang, K.-I., Kang, S.-K., Huang, Y., Kim, J., Lee, K.-M., Leal, C., and Rogers, J. A., “Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants,” NPG Asia Mater, 7, p. e227, 2015.Google Scholar
C. f. D. Control and Prevention, “National hospital discharge survey: 2010,” Atlanta (GA): CDC [online]. Available from URL: http://www.cdc.gov/nchs/nhds. htm. [Accessed 2009 Nov. 9.] 2014.Google Scholar
Salkind, A. R. and Rao, K. C., “Antiobiotic prophylaxis to prevent surgical site infections,” Am Fam Physician, 83(5), pp. 585590, 2011.Google Scholar
Robinson, B. H., “E-waste: An assessment of global production and environmental impacts,” Science of The Total Environment, 408(2), pp. 183191, 2009.Google Scholar
Luther, L., Managing Electronic Waste: Issues with Exporting E-Waste: DIANE Publishing Company, 2010.Google Scholar
Spalvins, E., Dubey, B., and Townsend, T., “Impact of electronic waste disposal on lead concentrations in landfill leachate,” Environmental Science & Technology, 42(19), pp. 74527458, 2008.Google Scholar
Babu, B. R., Parande, A. K., and Basha, C. A., “Electrical and electronic waste: a global environmental problem,” Waste Management & Research, 25(4), pp. 307318, 2007.Google Scholar
Morf, L. S., Tremp, J., Gloor, R., Huber, Y., Stengele, M., and Zennegg, M., “Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant,” Environmental Science & Technology, 39(22), pp. 86918699, 2005.Google Scholar
Leung, A., Cai, Z. W., and Wong, M. H., “Environmental contamination from electronic waste recycling at Guiyu, southeast China,” Journal of Material Cycles and Waste Management, 8(1), pp. 2133, 2006.Google Scholar
Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M., and Böni, H., “Global perspectives on e-waste,” Environmental Impact Assessment Review, 25(5), pp. 436458, 2005.CrossRefGoogle Scholar
Chi, X., Streicher-Porte, M., Wang, M. Y., and Reuter, M. A., “Informal electronic waste recycling: a sector review with special focus on China,” Waste Management, 31(4), pp. 731742, 2011.Google Scholar
Reck, B. K. and Graedel, T. E., “Challenges in metal recycling,” Science, 337(6095), pp. 690695, 2012.Google Scholar
Underwood, E., Trace Elements in Human and Animal Nutrition 4e: Elsevier, 2012.Google Scholar
Demirel, S., Tuzen, M., Saracoglu, S., and Soylak, M., “Evaluation of various digestion procedures for trace element contents of some food materials,” Journal of Hazardous Materials, 152(3), pp. 10201026, 2008.Google Scholar
Nielsen, F. H., “Essential and toxic trace elements in human health and disease,” Current Topics in Nutrition and Disease, 18, pp. 277292, 2008.Google Scholar
Kirkland, N. T., “Magnesium biomaterials: past, present and future,” Corrosion Engineering, Science and Technology, 47(5), pp. 322328, 2012.Google Scholar
Hartwig, A., “Role of magnesium in genomic stability,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 475(1–2), pp. 113121, 2001.Google Scholar
Damien, C. J. and Parsons, J. R., “Bone graft and bone graft substitutes: A review of current technology and applications,” Journal of Applied Biomaterials, 2(3), pp. 187208, 1991.Google Scholar
Bohner, M., “Resorbable biomaterials as bone graft substitutes,” Materials Today, 13(1–2), pp. 2430, 2010.Google Scholar
Witte, F., “The history of biodegradable magnesium implants: a review,” Acta Biomaterialia, 6(5), pp. 16801692, 2010.Google Scholar
Chaya, A., Yoshizawa, S., Verdelis, K., Myers, N., Costello, B. J., Chou, D.-T., Pal, S., Maiti, S., Kumta, P. N., and Sfeir, C., “In vivo study of magnesium plate and screw degradation and bone fracture healing,” Acta Biomaterialia, 18, pp. 262269, 2015.Google Scholar
Erbel, R., Di Mario, C., Bartunek, J., Bonnier, J., de Bruyne, B., Eberli, F. R., Erne, P., Haude, M., Heublein, B., Horrigan, M., Ilsley, C., Böse, D., Koolen, J., Lüscher, T. F., Weissman, N., and Waksman, R., “Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial,” The Lancet, 369(9576), pp. 18691875, 2007.Google Scholar
Slottow, T. L. P., Pakala, R., Okabe, T., Hellinga, D., Lovec, R. J., Tio, F. O., Bui, A. B., and Waksman, R., “Optical coherence tomography and intravascular ultrasound imaging of bioabsorbable magnesium stent degradation in porcine coronary arteries,” Cardiovascular Revascularization Medicine, 9(4), pp. 248254, 2008.Google Scholar
Di Mario, C., Griffiths, H., Goktekin, O., Peeters, N., Verbist, J., Bosiers, M., Deloose, K., Heublein, B., Rohde, R., and Kasese, V., “Drug‐eluting bioabsorbable magnesium stent,” Journal of Interventional Cardiology, 17(6), pp. 391395, 2004.Google Scholar
Tao, H., Hwang, S.-W., Marelli, B., An, B., Moreau, J. E., Yang, M., Brenckle, M. A., Kim, S., Kaplan, D. L., and Rogers, J. A., “Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement,” Proceedings of the National Academy of Sciences, 111(49), pp. 1738517389, 2014.Google Scholar
Makar, G. and Kruger, J., “Corrosion of magnesium,” International Materials Reviews, 2013.Google Scholar
Razavi, M., Fathi, M. H., Savabi, O., Vashaee, D., and Tayebi, L., “Biodegradation, bioactivity and in vivo biocompatibility analysis of plasma electrolytic oxidized (PEO) biodegradable Mg implants,” Physical Science International Journal, 4(5), p. 708, 2014.Google Scholar
Wei Guo, K., “A review of magnesium/magnesium alloys corrosion,” Recent Patents on Corrosion Science, 1(1), pp. 7290, 2011.Google Scholar
Song, G. and Song, S., “A possible biodegradable magnesium implant material,” Advanced Engineering Materials, 9(4), pp. 298302, 2007.Google Scholar
Yuen, C. and Ip, W., “Theoretical risk assessment of magnesium alloys as degradable biomedical implants,” Acta Biomaterialia, 6(5), pp. 18081812, 2010.Google Scholar
Pierson, D., Edick, J., Tauscher, A., Pokorney, E., Bowen, P., Gelbaugh, J., Stinson, J., Getty, H., Lee, C. H., Drelich, J., and Goldman, J., “A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B(1), pp. 5867, 2012.Google Scholar
Gray‐Munro, J. and Strong, M., “The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31,” Journal of Biomedical Materials Research Part A, 90(2), pp. 339350, 2009.Google Scholar
Zhang, Y., Zhang, G., and Wei, M., “Controlling the biodegradation rate of magnesium using biomimetic apatite coating,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 89(2), pp. 408414, 2009.Google Scholar
Wong, H. M., Yeung, K. W., Lam, K. O., Tam, V., Chu, P. K., Luk, K. D., and Cheung, K. M., “A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants,” Biomaterials, 31(8), pp. 20842096, 2010.Google Scholar
Li, M., Cheng, Y., Zheng, Y., Zhang, X., Xi, T., and Wei, S., “Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film,” Applied Surface Science, 258(7), pp. 30743081, 2012.Google Scholar
Hu, J., Li, Q., Zhong, X., and Kang, W., “Novel anti-corrosion silicon dioxide coating prepared by sol–gel method for AZ91D magnesium alloy,” Progress in Organic Coatings, 63(1), pp. 1317, 2008.Google Scholar
Song, Y., Shan, D., and Han, E., “Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application,” Materials Letters, 62(17), pp. 32763279, 2008.CrossRefGoogle Scholar
Gray, J. and Luan, B., “Protective coatings on magnesium and its alloys—a critical review,” Journal of Alloys and Compounds, 336(1), pp. 88113, 2002.Google Scholar
Altun, H. and Sen, S., “The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys,” Surface and Coatings Technology, 197(2), pp. 193200, 2005.Google Scholar
Song, G., “Control of biodegradation of biocompatable magnesium alloys,” Corrosion Science, 49(4), pp. 16961701, 2007.Google Scholar
Kirkland, N. T., Birbilis, N., Walker, J., Woodfield, T., Dias, G. J., and Staiger, M. P., “In-vitro dissolution of magnesium–calcium binary alloys: Clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95B(1), pp. 91100, 2010.Google Scholar
Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Tao, H., Zhang, Y., He, Y., Jiang, Y., and Bian, Y., “Research on an Mg–Zn alloy as a degradable biomaterial,” Acta Biomaterialia, 6(2), pp. 626640, 2010.Google Scholar
Seitz, J. M., Eifler, R., Stahl, J., Kietzmann, M., and Bach, F. W., “Characterization of MgNd2 alloy for potential applications in bioresorbable implantable devices,” Acta Biomaterialia, 8(10), pp. 38523864, 2012.Google Scholar
Nie, J., Gao, X., and Zhu, S.-M., “Enhanced age hardening response and creep resistance of Mg–Gd alloys containing Zn,” Scripta Materialia, 53(9), pp. 10491053, 2005.Google Scholar
Brar, H. S., Platt, M. O., Sarntinoranont, M., Martin, P. I., and Manuel, M. V., “Magnesium as a biodegradable and bioabsorbable material for medical implants,” JOM, 61(9), pp. 3134, 2009.Google Scholar
Cao, J. D., Kirkland, N. T., Laws, K. J., Birbilis, N., and Ferry, M., “Ca–Mg–Zn bulk metallic glasses as bioresorbable metals,” Acta Biomaterialia, 8(6), pp. 23752383, 2012.Google Scholar
Li, H., Zheng, Y., and Qin, L., “Progress of biodegradable metals,” Progress in Natural Science: Materials International, 24(5), pp. 414422, 2014.Google Scholar
MacDonald, R. S., “The role of zinc in growth and cell proliferation,” The Journal of Nutrition, 130(5), pp. 1500S1508S, 2000.Google Scholar
Wold, M. S., “Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism,” Annual Review of Biochemistry, 66(1), pp. 6192, 1997.Google Scholar
Wu, F. and Wu, C.-W., “Zinc in DNA replication and transcription,” Annual Review of Nutrition, 7(1), pp. 251272, 1987.Google Scholar
Yamaguchi, M., “Role of zinc in bone formation and bone resorption,” The Journal of Trace Elements in Experimental Medicine, 11(2–3), pp. 119135, 1998.Google Scholar
Brandão-Neto, J., Stefan, V., Mendonça, B. B., Bloise, W., and Castro, A. V. B., “The essential role of zinc in growth,” Nutrition Research, 15(3), pp. 335358, 1995.Google Scholar
Bowen, P. K., Guillory Ii, R. J., Shearier, E. R., Seitz, J.-M., Drelich, J., Bocks, M., Zhao, F., and Goldman, J., “Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents,” Materials Science and Engineering: C, 56, pp.467472, 2015.Google Scholar
Yun, Y., Dong, Z., Yang, D., Schulz, M. J., Shanov, V. N., Yarmolenko, S., Xu, Z., Kumta, P., and Sfeir, C., “Biodegradable Mg corrosion and osteoblast cell culture studies,” Materials Science and Engineering: C, 29(6), pp. 18141821, 2009.Google Scholar
Pistofidis, N., Vourlias, G., Konidaris, S., Pavlidou, E., Stergiou, A., and Stergioudis, G., “The effect of bismuth on the structure of zinc hot-dip galvanized coatings,” Materials Letters, 61(4–5), pp. 994997, 2007.Google Scholar
Zhang, X., Lin, S., Lu, X.-Q., and Z.-l. Chen, “Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron,” Chemical Engineering Journal, 163(3), pp. 243248, 2010.Google Scholar
Bowen, P. K., Drelich, J., and Goldman, J., “Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents,” Advanced Materials, 25(18), pp. 25772582, 2013.Google Scholar
Vojtěch, D., Kubásek, J., Šerák, J., and Novák, P., “Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation,” Acta Biomaterialia, 7(9), pp. 35153522, 2011.Google Scholar
Törne, K., Larsson, M., Norlin, A., and Weissenrieder, J., “Degradation of zinc in saline solutions, plasma, and whole blood,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(6), pp. 11411151, 2016.Google Scholar
Hennig, B., Toborek, M., and McClain, C. J., “Antiatherogenic properties of zinc: implications in endothelial cell metabolism,” Nutrition, 12(10), pp. 711717, 1996.Google Scholar
Liu, X., Sun, J., Yang, Y., Pu, Z., and Zheng, Y., “In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material,” Materials Letters, 161, pp. 5356, 2015.Google Scholar
Zhao, L., Zhang, Z., Song, Y., Liu, S., Qi, Y., Wang, X., Wang, Q., and Cui, C., “Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications,” Materials & Design, 108, pp. 136144, 2016.Google Scholar
Vojtěch, D., Kubasek, J., Šerák, J., and Novak, P., “Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation,” Acta Biomaterialia, 7(9), pp. 35153522, 2011.Google Scholar
Bolz, A. and Popp, T., “Implantable, bioresorbable vessel wall support, in particular coronary stent,” Google Patents, 2001.Google Scholar
Othman, R., Yahaya, A., and Arof, A. K., “A zinc–air cell employing a porous zinc electrode fabricated from zinc–graphite-natural biodegradable polymer paste,” Journal of Applied Electrochemistry, 32(12), pp. 13471353, 2002.Google Scholar
Huang, X., Liu, Y., Hwang, S.-W., Kang, S.-K., Patnaik, D., Cortes, J. F., and Rogers, J. A., “Biodegradable materials for multilayer transient printed circuit boards,” Advanced Materials, 26(43), pp. 73717377, 2014.Google Scholar
Bianco, A., Kostarelos, K., and Prato, M., “Making carbon nanotubes biocompatible and biodegradable,” Chemical Communications, 47(37), pp. 1018210188, 2011.Google Scholar
Jesion, I., Skibniewski, M., Skibniewska, E., Strupiński, W., Szulc-Dąbrowska, L., Krajewska, A., Pasternak, I., Kowalczyk, P., and Pińkowski, R., “Graphene and carbon nanocompounds: biofunctionalization and applications in tissue engineering,” Biotechnology & Biotechnological Equipment, 29(3), pp. 415422, 2015.Google Scholar
Wang, Q., Wang, C., Zhang, M., Jian, M., and Zhang, Y., “Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers,” Nano Letters, 16(10), pp. 66956700, 2016.Google Scholar
Rancan, F., Papakostas, D., Hadam, S., Hackbarth, S., Delair, T., Primard, C., Verrier, B., Sterry, W., Blume-Peytavi, U., and Vogt, A., “Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy,” Pharmaceutical Research, 26(8), pp. 20272036, 2009.Google Scholar
Oksman, K., Skrifvars, M., and Selin, J. F., “Natural fibres as reinforcement in polylactic acid (PLA) composites,” Composites Science and Technology, 63(9), pp. 13171324, 2003.Google Scholar
Cheng, Y., Deng, S., Chen, P., and Ruan, R., “Polylactic acid (PLA) synthesis and modifications: a review,” Frontiers of Chemistry in China, 4(3), pp. 259264, 2009.Google Scholar
Shawe, S., Buchanan, F., Harkin-Jones, E., and Farrar, D., “A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA),” Journal of Materials Science, 41(15), pp. 48324838, 2006.Google Scholar
Shum, A. W. T. and Mak, A. F. T., “Morphological and biomechanical characterization of poly(glycolic acid) scaffolds after in vitro degradation,” Polymer Degradation and Stability, 81(1), pp. 141149, 2003.Google Scholar
Day, R. M., Boccaccini, A. R., Shurey, S., Roether, J. A., Forbes, A., Hench, L. L., and Gabe, S. M., “Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds,” Biomaterials, 25(27), pp. 58575866, 2004.Google Scholar
Sarkar, S., Lee, G. Y., Wong, J. Y., and Desai, T. A., “Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications,” Biomaterials, 27(27), pp. 47754782, 2006.Google Scholar
, J.-M., Wang, X., Marin-Muller, C., Wang, H., Lin, P. H., Yao, Q., and Chen, C., “Current advances in research and clinical applications of PLGA-based nanotechnology,” Expert Review of Molecular Diagnostics, 9(4), pp. 325341, 2009.Google Scholar
Roy, T. D., Simon, J. L., Ricci, J. L., Rekow, E. D., Thompson, V. P., and Parsons, J. R., “Performance of degradable composite bone repair products made via three-dimensional fabrication techniques,” Journal of Biomedical Materials Research Part A, 66A(2), pp. 283291, 2003.Google Scholar
de Valence, S., Tille, J.-C., Mugnai, D., Mrowczynski, W., Gurny, R., Möller, M., and Walpoth, B. H., “Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model,” Biomaterials, 33(1), pp. 3847, 2012.Google Scholar
Lee, K. H., Kim, H. Y., Khil, M. S., Ra, Y. M., and Lee, D. R., “Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning,” Polymer, 44(4), pp. 12871294, 2003.Google Scholar
Chawla, J. S. and Amiji, M. M., “Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen,” International Journal of Pharmaceutics, 249(1–2), pp. 127138, 2002.Google Scholar
Zhao, K., Deng, Y., Chun Chen, J., and Chen, G.-Q., “Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility,” Biomaterials, 24(6), pp. 10411045, 2003.Google Scholar
Zinn, M., Witholt, B., and Egli, T., “Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate,” Advanced Drug Delivery Reviews, 53(1), pp. 521, 2001.Google Scholar
Shishatskaya, E. I., Volova, T. G., Puzyr, A. P., Mogilnaya, O. A., and Efremov, S. N., “Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures,” Journal of Materials Science: Materials in Medicine, 15(6), pp. 719728, 2004.Google Scholar
Tan, L., Yu, X., Wan, P., and Yang, K., “Biodegradable materials for bone repairs: A review,” Journal of Materials Science & Technology, 29(6), pp. 503513, 2013.Google Scholar
Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., and Filho, R. M., “Poly-lactic acid synthesis for application in biomedical devices – A review,” Biotechnology Advances, 30(1), pp. 321328, 2012.Google Scholar
Tang, Z. G., Black, R. A., Curran, J. M., Hunt, J. A., Rhodes, N. P., and Williams, D. F., “Surface properties and biocompatibility of solvent-cast poly[ε-caprolactone] films,” Biomaterials, 25(19), pp. 47414748, 2004.Google Scholar
Hwang, C., Park, Y., Park, J., Lee, K., Sun, K., Khademhosseini, A., and Lee, S. H., “Controlled cellular orientation on PLGA microfibers with defined diameters,” Biomedical Microdevices, 11(4), pp. 739746, 2009.Google Scholar
Zhang, Y., Ouyang, H., Lim, C. T., Ramakrishna, S., and Huang, Z. M., “Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72(1), pp. 156165, 2005.Google Scholar
Rhim, J.-W., Mohanty, A. K., Singh, S. P., and Ng, P. K. W., “Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting,” Journal of Applied Polymer Science, 101(6), pp. 37363742, 2006.Google Scholar
Harris, A. M. and Lee, E. C., “Improving mechanical performance of injection molded PLA by controlling crystallinity,” Journal of Applied Polymer Science, 107(4), pp. 22462255, 2008.Google Scholar
Maquet, V. and Jerome, R., “Design of macroporous biodegradable polymer scaffolds for cell transplantation,” in Materials Science Forum, 1997, pp. 1542.Google Scholar
Harris, L. D., Kim, B.-S., and Mooney, D. J., “Open pore biodegradable matrices formed with gas foaming,” Journal of Biomedical Materials Research, 42(3), pp. 396402, 1998.Google Scholar
Kim, T. K., Yoon, J. J., Lee, D. S., and Park, T. G., “Gas foamed open porous biodegradable polymeric microspheres,” Biomaterials, 27(2), pp. 152159, 2006.Google Scholar
Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Le Breton, A., and Préat, V., “PLGA-based nanoparticles: An overview of biomedical applications,” Journal of Controlled Release, 161(2), pp. 505522, 2012.Google Scholar
Hu, J., Prabhakaran, M. P., Tian, L., Ding, X., and Ramakrishna, S., “Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility,” RSC Advances, 5(121), pp. 100256100267, 2015.Google Scholar
Peponi, L., Navarro-Baena, I., Sonseca, A., Gimenez, E., Marcos-Fernandez, A., and Kenny, J. M., “Synthesis and characterization of PCL–PLLA polyurethane with shape memory behavior,” European Polymer Journal, 49(4), pp. 893903, 2013.Google Scholar
Yu, X., Wang, L., Huang, M., Gong, T., Li, W., Cao, Y., Ji, D., Wang, P., Wang, J., and Zhou, S., “A shape memory stent of poly(ε-caprolactone-co-dl-lactide) copolymer for potential treatment of esophageal stenosis,” Journal of Materials Science: Materials in Medicine, 23(2), pp. 581589, 2012.Google Scholar
Wang, W., Ping, P., Chen, X., and Jing, X., “Biodegradable polyurethane based on random copolymer of L-lactide and ϵ-caprolactone and its shape-memory property,” Journal of Applied Polymer Science, 104(6), pp. 41824187, 2007.Google Scholar
Cohn, D. and Hotovely Salomon, A., “Designing biodegradable multiblock PCL/PLA thermoplastic elastomers,” Biomaterials, 26(15), pp. 22972305, 2005.Google Scholar
Choi, S. H. and Park, T. G., “Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers,” Journal of Biomaterials Science, Polymer Edition, 13(10), pp. 11631173, 2002.Google Scholar
Shishatskaya, E. I., Volova, T. G., Gordeev, S. A., and Puzyr, A. P., “Degradation of P(3HB) and P(3HB-co-3HV) in biological media,” Journal of Biomaterials Science, Polymer Edition, 16(5), pp. 643657, 2005.CrossRefGoogle Scholar
Valappil, S. P., Misra, S. K., Boccaccini, A. R., and Roy, I., “Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses,” Expert Review of Medical Devices, 3(6), pp. 853868, 2006.Google Scholar
Philip, S., Keshavarz, T., and Roy, I., “Polyhydroxyalkanoates: biodegradable polymers with a range of applications,” Journal of Chemical Technology & Biotechnology, 82(3), pp. 233247, 2007.Google Scholar
Hinüber, C., Chwalek, K., Pan-Montojo, F. J., Nitschke, M., Vogel, R., Brünig, H., Heinrich, G., and Werner, C., “Hierarchically structured nerve guidance channels based on poly-3-hydroxybutyrate enhance oriented axonal outgrowth,” Acta Biomaterialia, 10(5), pp. 20862095, 2014.Google Scholar
Nigmatullin, R., Thomas, P., Lukasiewicz, B., Puthussery, H., and Roy, I., “Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery,” Journal of Chemical Technology & Biotechnology, 90(7), pp. 12091221, 2015.Google Scholar
Francis, L., Meng, D., Knowles, J., Keshavarz, T., Boccaccini, A. R., and Roy, I., “Controlled delivery of gentamicin using poly (3-hydroxybutyrate) microspheres,” International Journal of Molecular Sciences, 12(7), pp. 42944314, 2011.Google Scholar
An, J., Wang, K., Chen, S., Kong, M., Teng, Y., Wang, L., Song, C., Kong, D., and Wang, S., “Biodegradability, cellular compatibility and cell infiltration of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) in comparison with poly (ε-caprolactone) and poly (lactide-co-glycolide),” Journal of Bioactive and Compatible Polymers: Biomedical Applications, 30(2), pp. 209221, 2015.Google Scholar
Ulery, B. D., Nair, L. S., and Laurencin, C. T., “Biomedical applications of biodegradable polymers,” Journal of Polymer Science Part B: Polymer Physics, 49(12), pp. 832864, 2011.Google Scholar
Kellomäki, M., Niiranen, H., Puumanen, K., Ashammakhi, N., Waris, T., and Törmälä, P., “Bioabsorbable scaffolds for guided bone regeneration and generation,” Biomaterials, 21(24), pp. 24952505, 2000.Google Scholar
Sheridan, M. H., Shea, L. D., Peters, M. C., and Mooney, D. J., “Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery,” Journal of Controlled Release, 64(1–3), pp. 91102, 2000.Google Scholar
van der Elst, M., Klein, C. P. A. T., de Blieck-Hogervorst, J. M., Patka, P., and Haarman, H. J. T. M., “Bone tissue response to biodegradable polymers used for intra medullary fracture fixation: A long-term in vivo study in sheep femora,” Biomaterials, 20(2), pp. 121128, 1999.Google Scholar
Vainionpää, S., Kilpikari, J., Laiho, J., Helevirta, P., Rokkanen, P., and Törmälä, P., “Strength and strength retention vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation,” Biomaterials, 8(1), pp. 4648, 1987.Google Scholar
Rai, B., Teoh, S. H., Hutmacher, D. W., Cao, T., and Ho, K. H., “Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2,” Biomaterials, 26(17), pp. 37393748, 2005.Google Scholar
Grube, E., Sonoda, S., Ikeno, F., Honda, Y., Kar, S., Chan, C., Gerckens, U., Lansky, A. J., and Fitzgerald, P. J., “Six-and twelve-month results from first human experience using everolimus-eluting stents with bioabsorbable polymer,” Circulation, 109(18), pp. 21682171, 2004.Google Scholar
Erne, P., Schier, M., and Resink, T. J., “The road to bioabsorbable stents: Reaching clinical reality?,” CardioVascular and Interventional Radiology, 29(1), pp. 1116, 2006.Google Scholar
Bettinger, C. J. and Bao, Z., “Organic thin-film transistors fabricated on resorbable biomaterial substrates,” Advanced Materials, 22(5), pp. 651655, 2010.Google Scholar
Campana, A., Cramer, T., Simon, D. T., Berggren, M., and Biscarini, F., “Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold,” Advanced Materials, 26(23), pp. 38743878, 2014.Google Scholar
Yu, K. J., Kuzum, D., Hwang, S.-W., Kim, B. H., Juul, H., Kim, N. H., Won, S. M., Chiang, K., Trumpis, M., Richardson, A. G., Cheng, H., Fang, H., Thompson, M., Bink, H., Talos, D., Seo, K. J., Lee, H. N., Kang, S.-K., Kim, J.-H., Lee, J. Y., Huang, Y., Jensen, F. E., Dichter, M. A., Lucas, T. H., Viventi, J., Litt, B., and Rogers, J. A., “Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex,” Nat Mater, 15(7), pp. 782791, 2016.Google Scholar
Yin, L., Huang, X., Xu, H., Zhang, Y., Lam, J., Cheng, J., and Rogers, J. A., “Materials, designs, and operational characteristics for fully biodegradable primary batteries,” Advanced Materials, 26(23), pp. 38793884, 2014.Google Scholar
Kang, S.-K., Murphy, R. K. J., Hwang, S.-W., Lee, S. M., Harburg, D. V., Krueger, N. A., Shin, J., Gamble, P., Cheng, H., Yu, S., Liu, Z., McCall, J. G., Stephen, M., Ying, H., Kim, J., Park, G., Webb, R. C., Lee, C. H., Chung, S., Wie, D. S., Gujar, A. D., Vemulapalli, B., Kim, A. H., Lee, K.-M., Cheng, J., Huang, Y., Lee, S. H., Braun, P. V., Ray, W. Z., and Rogers, J. A., “Bioresorbable silicon electronic sensors for the brain,” Nature, 530(7588), pp. 7176, 2016.Google Scholar
Hennink, W. E. and van Nostrum, C. F., “Novel crosslinking methods to design hydrogels,” Advanced Drug Delivery Reviews, 64, Supplement, pp. 223236, 2012.Google Scholar
Zhu, J., “Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering,” Biomaterials, 31(17), pp. 46394656, 2010.Google Scholar
Revzin, A., Russell, R. J., Yadavalli, V. K., Koh, W.-G., Deister, C., Hile, D. D., Mellott, M. B., and Pishko, M. V., “Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography,” Langmuir, 17(18), pp. 54405447, 2001.Google Scholar
Koh, W.-G., Revzin, A., and Pishko, M. V., “Poly(ethylene glycol) hydrogel microstructures encapsulating living cells,” Langmuir, 18(7), pp. 24592462, 2002.Google Scholar
Otsuka, H., Nagasaki, Y., and Kataoka, K., “Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications,” Current Opinion in Colloid & Interface Science, 6(1), pp. 310, 2001.Google Scholar
Alconcel, S. N. S., Baas, A. S., and Maynard, H. D., “FDA-approved poly(ethylene glycol)-protein conjugate drugs,” Polymer Chemistry, 2(7), pp. 14421448, 2011.Google Scholar
Mellott, M. B., Searcy, K., and Pishko, M. V., “Release of protein from highly cross-linked hydrogels of poly(ethylene glycol) diacrylate fabricated by UV polymerization,” Biomaterials, 22(9), pp. 929941, 2001.Google Scholar
Revzin, A., Tompkins, R. G., and Toner, M., “Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass,” Langmuir, 19(23), pp. 98559862, 2003.Google Scholar
Nguyen, K. T. and West, J. L., “Photopolymerizable hydrogels for tissue engineering applications,” Biomaterials, 23(22), pp. 43074314, 2002.CrossRefGoogle ScholarPubMed
Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H., and West, J. L., “Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering,” Biomaterials, 22(22), pp. 30453051, 2001.Google Scholar
Gaharwar, A. K., Rivera, C. P., Wu, C.-J., and Schmidt, G., “Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles,” Acta Biomaterialia, 7(12), pp. 41394148, 2011.Google Scholar
Fujiwara, T., Mukose, T., Yamaoka, T., Yamane, H., Sakurai, S., and Kimura, Y., “Novel thermo‐responsive formation of a hydrogel by stereo‐complexation between PLLA‐PEG‐PLLA and PDLA‐PEG‐PDLA block copolymers,” Macromolecular Bioscience, 1(5), pp. 204208, 2001.Google Scholar
Nagahama, K., Fujiura, K., Enami, S., Ouchi, T., and Ohya, Y., “Irreversible temperature‐responsive formation of high‐strength hydrogel from an enantiomeric mixture of starburst triblock copolymers consisting of 8‐arm PEG and PLLA or PDLA,” Journal of Polymer Science Part A: Polymer Chemistry, 46(18), pp. 63176332, 2008.Google Scholar
Gong, C., Shi, S., Wu, L., Gou, M., Yin, Q., Guo, Q., Dong, P., Zhang, F., Luo, F., and Zhao, X., “Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel. Part 2: Sol–gel–sol transition and drug delivery behavior,” Acta Biomaterialia, 5(9), pp. 33583370, 2009.CrossRefGoogle ScholarPubMed
Liu, C. B., Gong, C. Y., Huang, M. J., Wang, J. W., Pan, Y. F., Zhang, Y. D., Li, G. Z., Gou, M. L., Wang, K., and Tu, M. J., “Thermoreversible gel–sol behavior of biodegradable PCL–PEG–PCL triblock copolymer in aqueous solutions,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84(1), pp. 165175, 2008.Google Scholar
Qiao, M., Chen, D., Ma, X., and Liu, Y., “Injectable biodegradable temperature-responsive PLGA–PEG–PLGA copolymers: Synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels,” International Journal of Pharmaceutics, 294(1–2), pp. 103112, 2005.CrossRefGoogle ScholarPubMed
Choi, S., Baudys, M., and Kim, S. W., “Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats,” Pharmaceutical Research, 21(5), pp. 827831, 2004.Google Scholar
Douglas, A., Muralidharan, N., Carter, R., Share, K., and Pint, C. L., “Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics,” Nanoscale, 8(14), pp. 73847390, 2016.CrossRefGoogle ScholarPubMed
Kim, K.-H., Jeong, L., Park, H.-N., Shin, S.-Y., Park, W.-H., Lee, S.-C., Kim, T.-I., Park, Y.-J., Seol, Y.-J., Lee, Y.-M., Ku, Y., Rhyu, I.-C., Han, S.-B., and Chung, C.-P., “Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration,” Journal of Biotechnology, 120(3), pp. 327339, 2005.Google Scholar
Wenk, E., Merkle, H. P., and Meinel, L., “Silk fibroin as a vehicle for drug delivery applications,” Journal of Controlled Release, 150(2), pp. 128141, 2011.Google Scholar
Hämmerle, C. H. F. and Lang, N. P., “Single stage surgery combining transmucosal implant placement with guided bone regeneration and bioresorbable materials,” Clinical Oral Implants Research, 12(1), pp. 918, 2001.Google Scholar
Sell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., and Bowlin, G. L., “Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering,” Advanced Drug Delivery Reviews, 61(12), pp. 10071019, 2009.Google Scholar
Kuijpers, A., Van Wachem, P., Van Luyn, M., Plantinga, J., Engbers, G., Krijgsveld, J., Zaat, S., Dankert, J., and Feijen, J., “In vivo compatibility and degradation of crosslinked gelatin gels incorporated in knitted Dacron,” Journal of Biomedical Materials Research, 51(1), pp. 136145, 2000.Google Scholar
Duconseille, A., Astruc, T., Quintana, N., Meersman, F., and Sante-Lhoutellier, V., “Gelatin structure and composition linked to hard capsule dissolution: a review,” Food Hydrocolloids, 43, pp. 360376, 2015.Google Scholar
Partridge, S. and Davis, H., “The chemistry of connective tissues. 3. Composition of the soluble proteins derived from elastin,” Biochemical Journal, 61(1), p. 21, 1955.Google Scholar
Grover, C. N., Cameron, R. E., and Best, S. M., “Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering,” Journal of the Mechanical Behavior of Biomedical Materials, 10, pp. 6274, 2012.Google Scholar
Chang, J. W., Wang, C. G., Huang, C. Y., Tzung‐Da, T., Guo, T. F., and Wen, T. C., “Chicken albumen dielectrics in organic field-effect transistors,” Advanced Materials, 23(35), pp. 4077–81, 2011.Google Scholar
Li, M., Mondrinos, M. J., Gandhi, M. R., Ko, F. K., Weiss, A. S., and Lelkes, P. I., “Electrospun protein fibers as matrices for tissue engineering,” Biomaterials, 26(30), pp. 59996008, 2005.CrossRefGoogle ScholarPubMed
Qiu, W., Huang, Y., Teng, W., Cohn, C. M., Cappello, J., and Wu, X., “Complete recombinant silk-elastinlike protein-based tissue scaffold,” Biomacromolecules, 11(12), pp. 32193227, 2010.Google Scholar
Yeo, I.-S., Oh, J.-E., Jeong, L., Lee, T. S., Lee, S. J., Park, W. H., and Min, B.-M., “Collagen-based biomimetic nanofibrous scaffolds: Preparation and characterization of collagen/silk fibroin bicomponent nanofibrous structures,” Biomacromolecules, 9(4), pp. 11061116, 2008.Google Scholar
Zilberman, M., Schwade, N. D., and Eberhart, R. C., “Protein-loaded bioresorbable fibers and expandable stents: Mechanical properties and protein release,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, 69B(1), pp. 110, 2004.Google Scholar
Asai, D., Xu, D., Liu, W., Garcia Quiroz, F., Callahan, D. J., Zalutsky, M. R., Craig, S. L., and Chilkoti, A., “Protein polymer hydrogels by in situ, rapid and reversible self-gelation,” Biomaterials, 33(21), pp. 54515458, 2012.Google Scholar
Kundu, B., Rajkhowa, R., Kundu, S. C., and Wang, X., “Silk fibroin biomaterials for tissue regenerations,” Advanced Drug Delivery Reviews, 65(4), pp. 457470, 2013.Google Scholar
Gui‐Bo, Y., You‐Zhu, Z., Shu‐Dong, W., De‐Bing, S., Zhi‐Hui, D., and Wei‐Guo, F., “Study of the electrospun PLA/silk fibroin‐gelatin composite nanofibrous scaffold for tissue engineering,” Journal of Biomedical Materials Research Part A, 93(1), pp. 158163, 2010.Google Scholar
Cheung, H.-Y., Lau, K.-T., Tao, X.-M., and Hui, D., “A potential material for tissue engineering: Silkworm silk/PLA biocomposite,” Composites Part B: Engineering, 39(6), pp. 10261033, 2008.Google Scholar
Li, M., Mondrinos, M. J., Chen, X., Gandhi, M. R., Ko, F. K., and Lelkes, P. I., “Co‐electrospun poly (lactide‐co‐glycolide), gelatin, and elastin blends for tissue engineering scaffolds,” Journal of Biomedical Materials Research Part A, 79(4), pp. 963973, 2006.Google Scholar
Meng, Z., Wang, Y., Ma, C., Zheng, W., Li, L., and Zheng, Y., “Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering,” Materials Science and Engineering: C, 30(8), pp. 12041210, 2010.Google Scholar
Li, L., Li, H., Qian, Y., Li, X., Singh, G. K., Zhong, L., Liu, W., Lv, Y., Cai, K., and Yang, L., “Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release,” International Journal of Biological Macromolecules, 49(2), pp. 223232, 2011.Google Scholar
Jeon, D.-B., Bak, J.-Y., and Yoon, S.-M., “Oxide thin-film transistors fabricated using biodegradable gate dielectric layer of chicken albumen,” Japanese Journal of Applied Physics, 52(12 R), p. 128002, 2013.Google Scholar
Capelli, R., Amsden, J. J., Generali, G., Toffanin, S., Benfenati, V., Muccini, M., Kaplan, D., Omenetto, F., and Zamboni, R., “Integration of silk protein in organic and light-emitting transistors,” Organic Electronics, 12(7), pp. 11461151, 2011.Google Scholar
Lour, W. S., Liu, W. C., Tsai, J. H., and Laih, L. W., “High‐performance camel‐gate field effect transistor using high‐medium‐low doped structure,” Applied Physics Letters, 67(18), pp. 26362638, 1995.Google Scholar
Mao, L.-K., Hwang, J.-C., Chang, T.-H., Hsieh, C.-Y., Tsai, L.-S., Chueh, Y.-L., Hsu, S. S., Lyu, P.-C., and Liu, T.-J., “Pentacene organic thin-film transistors with solution-based gelatin dielectric,” Organic Electronics, 14(4), pp. 11701176, 2013.Google Scholar
Zhang, W.-H., Jiang, B.-J., and Yang, P., “Proteins as functional interlayer in organic field-effect transistor,” Chinese Chemical Letters.Google Scholar
Im, H., Huang, X.-J., Gu, B., and Choi, Y.-K., “A dielectric-modulated field-effect transistor for biosensing,” Nature Nanotechnology, 2(7), pp. 430434, 2007.Google Scholar
Hu, P., Fasoli, A., Park, J., Choi, Y., Estrela, P., Maeng, S. L., Milne, W. I., and Ferrari, A. C., “Self-assembled nanotube field-effect transistors for label-free protein biosensors,” Journal of Applied Physics, 104(7), p. 074310, 2008.Google Scholar
Minamiki, T., Minami, T., Koutnik, P., Anzenbacher, P. Jr, and Tokito, S., “Antibody- and label-free phosphoprotein sensor device based on an organic transistor,” Analytical Chemistry, 88(2), pp. 10921095, 2016.Google Scholar
Cid, C. C., Riu, J., Maroto, A., and Rius, F. X., “Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G,” Analyst, 133(8), pp. 10051008, 2008.Google Scholar
Park, K.-Y., Sohn, Y.-S., Kim, C.-K., Kim, H.-S., Bae, Y.-S., and Choi, S.-Y., “Development of FET-type albumin sensor for diagnosing nephritis,” Biosensors and Bioelectronics, 23(12), pp. 19041907, 2008.Google Scholar
Chen, J., Vongsanga, K., Wang, X., and Byrne, N., “What happens during natural protein fibre dissolution in ionic liquids,” Materials, 7(9), pp. 61586168, 2014.Google Scholar
Rockwood, D. N., Preda, R. C., Yucel, T., Wang, X., Lovett, M. L., and Kaplan, D. L., “Materials fabrication from Bombyx mori silk fibroin,” Nat. Protocols, 6(10), pp. 16121631, 2011.Google Scholar
Keten, S., Xu, Z., Ihle, B., and Buehler, M. J., “Nanoconfinement controls stiffness, strength and mechanical toughness of [beta]-sheet crystals in silk,” Nat Mater, 9(4), pp. 359367, 2010.Google Scholar
Lefèvre, T., Rousseau, M.-E., and Pézolet, M., “Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy,” Biophysical Journal, 92(8), pp. 28852895, 2007.Google Scholar
Hu, X., Shmelev, K., Sun, L., Gil, E.-S., Park, S.-H., Cebe, P., and Kaplan, D. L., “Regulation of silk material structure by temperature-controlled water vapor annealing,” Biomacromolecules, 12(5), pp. 16861696, 2011.Google Scholar
Li, M., Ogiso, M., and Minoura, N., “Enzymatic degradation behavior of porous silk fibroin sheets,” Biomaterials, 24(2), pp. 357365, 2003.Google Scholar
Arai, T., Freddi, G., Innocenti, R., and Tsukada, M., “Biodegradation of Bombyx mori silk fibroin fibers and films,” Journal of Applied Polymer Science, 91(4), pp. 23832390, 2004.CrossRefGoogle Scholar
Chen, K., Umeda, Y., and Hirabayashi, K., “Enzymatic hydrolysis of silk fibroin,” The Journal of Sericultural Science of Japan, 65(2), pp. 131133, 1996.Google Scholar
Pritchard, E. M. and Kaplan, D. L., “Silk fibroin biomaterials for controlled release drug delivery,” Expert Opinion on Drug Delivery, 8(6), pp. 797811, 2011.Google Scholar
Wang, X., Yucel, T., Lu, Q., Hu, X., and Kaplan, D. L., “Silk nanospheres and microspheres from silk/pva blend films for drug delivery,” Biomaterials, 31(6), pp. 10251035, 2010.Google Scholar
Lammel, A. S., Hu, X., Park, S.-H., Kaplan, D. L., and Scheibel, T. R., “Controlling silk fibroin particle features for drug delivery,” Biomaterials, 31(16), pp. 45834591, 2010.Google Scholar
Enomoto, S., Sumi, M., Kajimoto, K., Nakazawa, Y., Takahashi, R., Takabayashi, C., Asakura, T., and Sata, M., “Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material,” Journal of Vascular Surgery, 51(1), pp. 155164, 2010.Google Scholar
Nakazawa, Y., Sato, M., Takahashi, R., Aytemiz, D., Takabayashi, C., Tamura, T., Enomoto, S., Sata, M., and Asakura, T., “Development of small-diameter vascular grafts based on silk fibroin fibers from Bombyx mori for vascular regeneration,” Journal of Biomaterials Science, Polymer Edition, 22(1–3), pp. 195206, 2011.Google Scholar
Gruchenberg, K., Ignatius, A., Friemert, B., von Lübken, F., Skaer, N., Gellynck, K., Kessler, O., and Dürselen, L., “In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model,” Knee Surgery, Sports Traumatology, Arthroscopy, 23(8), pp. 22182229, 2015.Google Scholar
Wang, Y., Kim, U.-J., Blasioli, D. J., Kim, H.-J., and Kaplan, D. L., “In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells,” Biomaterials, 26(34), pp. 70827094, 2005.Google Scholar
Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., Lu, H., Richmond, J., and Kaplan, D. L., “Silk-based biomaterials,” Biomaterials, 24(3), pp. 401416, 2003.Google Scholar
Mannoor, M. S., Tao, H., Clayton, J. D., Sengupta, A., Kaplan, D. L., Naik, R. R., Verma, N., Omenetto, F. G., and McAlpine, M. C., “Graphene-based wireless bacteria detection on tooth enamel,” Nature Communications, 3, p. 763, 2012.Google Scholar
Omenetto, F. G. and Kaplan, D. L., “A new route for silk,” Nature Photonics, 2(11), pp. 641643, 2008.Google Scholar
Parker, S. T., Domachuk, P., Amsden, J., Bressner, J., Lewis, J. A., Kaplan, D. L., and Omenetto, F. G., “Biocompatible silk printed optical waveguides,” Advanced Materials, 21(23), pp. 24112415, 2009.Google Scholar
Tao, H., Amsden, J. J., Strikwerda, A. C., Fan, K., Kaplan, D. L., Zhang, X., Averitt, R. D., and Omenetto, F. G., “Metamaterial silk composites at terahertz frequencies,” Advanced Materials, 22(32), pp. 35273531, 2010.Google Scholar
Digenis, G. A., Gold, T. B., and Shah, V. P., “Cross-linking of gelatin capsules and its relevance to their in vitro–in vivo performance,” Journal of Pharmaceutical Sciences, 83(7), pp. 915921, 1994.Google Scholar
Casey, D. L., Beihn, R. M., Digenis, G. A., and Shambhu, M. B., “Method for monitoring hard gelatin capsule disintegration times in humans using external scintigraphy,” Journal of Pharmaceutical Sciences, 65(9), pp. 14121413, 1976.Google Scholar
Djagny, K. B., Wang, Z., and Xu, S., “Gelatin: a valuable protein for food and pharmaceutical industries: review,” Critical Reviews in Food Science and Nutrition, 41(6), pp. 481492, 2001.Google Scholar
Botzolakis, J. E. and Augsburger, L. L., “Disintegrating agents in hard gelatin capsules. Part II: Swelling efficiency,” Drug Development and Industrial Pharmacy, 14(9), pp. 12351248, 1988.Google Scholar
Lou, X. and Chirila, T. V., “Swelling behavior and mechanical properties of chemically cross-linked gelatin gels for biomedical use,” Journal of Biomaterials Applications, 14(2), pp. 184191, 1999.CrossRefGoogle ScholarPubMed
Lee, K. Y., Shim, J., and Lee, H. G., “Mechanical properties of gellan and gelatin composite films,” Carbohydrate Polymers, 56(2), pp. 251254, 2004.Google Scholar
Hom, F., Veresh, S., and Miskel, J., “Soft gelatin capsules I: Factors affecting capsule shell dissolution rate,” Journal of Pharmaceutical Sciences, 62(6), pp. 10011006, 1973.Google Scholar
Negrete-Abascal, E., Tenorio, V. R., Serrano, J. J., Garcia, C., and de la Garza, M., “Secreted proteases from Actinobacillus pleuropneumoniae serotype 1 degrade porcine gelatin, hemoglobin and immunoglobulin A,” Canadian Journal of Veterinary Research, 58(2), p. 83, 1994.Google Scholar
Tabata, Y. and Ikada, Y., “Protein release from gelatin matrices,” Advanced Drug Delivery Reviews, 31(3), pp. 287301, 1998.Google Scholar
Irimia-Vladu, M., Troshin, P. A., Reisinger, M., Schwabegger, G., Ullah, M., Schwoediauer, R., Mumyatov, A., Bodea, M., Fergus, J. W., and Razumov, V. F., “Environmentally sustainable organic field effect transistors,” Organic Electronics, 11(12), pp. 19741990, 2010.Google Scholar
Uhlig, C., Rapp, M., Hartmann, B., Hierlemann, H., Planck, H., and Dittel, K.-K., “Suprathel® – An innovative, resorbable skin substitute for the treatment of burn victims,” Burns, 33(2), pp. 221229, 2007.Google Scholar
Zahedi, P., Rezaeian, I., Ranaei-Siadat, S.-O., Jafari, S.-H., and Supaphol, P., “A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages,” Polymers for Advanced Technologies, 21(2), pp. 7795, 2010.Google Scholar
Allen, R. A., Wu, W., Yao, M., Dutta, D., Duan, X., Bachman, T. N., Champion, H. C., Stolz, D. B., Robertson, A. M., and Kim, K., “Nerve regeneration and elastin formation within poly (glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model,” Biomaterials, 35(1), pp. 165173, 2014.Google Scholar
Yang, J., Motlagh, D., Allen, J. B., Webb, A. R., Kibbe, M. R., Aalami, O., Kapadia, M., Carroll, T. J., and Ameer, G. A., “Modulating expanded polytetrafluoroethylene vascular graft host response via citric acid‐based biodegradable elastomers,” Advanced Materials, 18(12), pp. 14931498, 2006.Google Scholar
Rai, R., Tallawi, M., Grigore, A., and Boccaccini, A. R., “Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review,” Progress in Polymer Science, 37(8), pp. 10511078, 2012.Google Scholar
Kang, Y., Yang, J., Khan, S., Anissian, L., and Ameer, G. A., “A new biodegradable polyester elastomer for cartilage tissue engineering,” Journal of Biomedical Materials Research Part A, 77A(2), pp. 331339, 2006.Google Scholar
Rai, R., Tallawi, M., Barbani, N., Frati, C., Madeddu, D., Cavalli, S., Graiani, G., Quaini, F., Roether, J. A., and Schubert, D. W., “Biomimetic poly (glycerol sebacate)(PGS) membranes for cardiac patch application,” Materials Science and Engineering: C, 33(7), pp. 36773687, 2013.Google Scholar
Prabhakaran, M. P., Nair, A. S., Kai, D., and Ramakrishna, S., “Electrospun composite scaffolds containing poly (octanediol‐co‐citrate) for cardiac tissue engineering,” Biopolymers, 97(7), pp. 529538, 2012.Google Scholar
Crapo, P. M., Gao, J., and Wang, Y., “Seamless tubular poly (glycerol sebacate) scaffolds: High‐yield fabrication and potential applications,” Journal of Biomedical Materials Research Part A, 86(2), pp. 354363, 2008.Google Scholar
Lee, K.-W., Stolz, D. B., and Wang, Y., “Substantial expression of mature elastin in arterial constructs,” Proceedings of the National Academy of Sciences, 108(7), pp. 27052710, 2011.Google Scholar
Chia, S.-L., Gorna, K., Gogolewski, S., and Alini, M., “Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair,” Tissue Engineering, 12(7), pp. 19451953, 2006.Google Scholar
Grad, S., Kupcsik, L., Gorna, K., Gogolewski, S., and Alini, M., “The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations,” Biomaterials, 24(28), pp. 51635171, 2003.Google Scholar
Borkenhagen, M., Stoll, R., Neuenschwander, P., Suter, U., and Aebischer, P., “In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel,” Biomaterials, 19(23), pp. 21552165, 1998.Google Scholar
Amsden, B., “Curable, biodegradable elastomers: emerging biomaterials for drug delivery and tissue engineering,” Soft Matter, 3(11), pp. 13351348, 2007.Google Scholar
Gorna, K. and Gogolewski, S., “Biodegradable porous polyurethane scaffolds for tissue repair and regeneration,” Journal of Biomedical Materials Research Part A, 79A(1), pp. 128138, 2006.Google Scholar
Kanyanta, V. and Ivankovic, A., “Mechanical characterisation of polyurethane elastomer for biomedical applications,” Journal of the Mechanical Behavior of Biomedical Materials, 3(1), pp. 5162, 2010.Google Scholar
Bat, E., Kothman, B. H. M., Higuera, G. A., van Blitterswijk, C. A., Feijen, J., and Grijpma, D. W., “Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds,” Biomaterials, 31(33), pp. 86968705, 2010.Google Scholar
Dargaville, B. L., Vaquette, C. d., Peng, H., Rasoul, F., Chau, Y. Q., Cooper-White, J. J., Campbell, J. H., and Whittaker, A. K., “Cross-linked poly (trimethylene carbonate-co-L-lactide) as a biodegradable, elastomeric scaffold for vascular engineering applications,” Biomacromolecules, 12(11), pp. 38563869, 2011.Google Scholar
Bettinger, C. J., Orrick, B., Misra, A., Langer, R., and Borenstein, J. T., “Microfabrication of poly (glycerol–sebacate) for contact guidance applications,” Biomaterials, 27(12), pp. 25582565, 2006.CrossRefGoogle ScholarPubMed
Martin, D. P. and Williams, S. F., “Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial,” Biochemical Engineering Journal, 16(2), pp. 97105, 2003.Google Scholar
Williams, S. F., Rizk, S., and Martin, D. P., “Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration,” Biomedizinische Technik/Biomedical Engineering, 58(5), pp. 114, 2013.Google Scholar
Yang, J., Webb, A. R., Pickerill, S. J., Hageman, G., and Ameer, G. A., “Synthesis and evaluation of poly (diol citrate) biodegradable elastomers,” Biomaterials, 27(9), pp. 18891898, 2006.Google Scholar
Patel, A., Gaharwar, A. K., Iviglia, G., Zhang, H., Mukundan, S., Mihaila, S. M., Demarchi, D., and Khademhosseini, A., “Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers,” Biomaterials, 34(16), pp. 39703983, 2013.Google Scholar
Serrano, M. C., Chung, E. J., and Ameer, G., “Advances and applications of biodegradable elastomers in regenerative medicine,” Advanced Functional Materials, 20(2), pp. 192208, 2010.Google Scholar
Wang, Y., Ameer, G. A., Sheppard, B. J., and Langer, R., “A tough biodegradable elastomer,” Nat Biotech, 20(6), pp. 602606, 2002.Google Scholar
Sant, S., Hwang, C. M., Lee, S.-H., and Khademhosseini, A., “Hybrid PGS–PCL microfibrous scaffolds with improved mechanical and biological properties,” Journal of Tissue Engineering and Regenerative Medicine, 5(4), pp. 283291, 2011.Google Scholar
Liang, S.-L., Yang, X.-Y., Fang, X.-Y., Cook, W. D., Thouas, G. A., and Chen, Q.-Z., “In vitro enzymatic degradation of poly (glycerol sebacate)-based materials,” Biomaterials, 32(33), pp. 84868496, 2011.Google Scholar
Boutry, C. M., Nguyen, A., Lawal, Q. O., Chortos, A., and Bao, Z., “Fully biodegradable pressure sensor, viscoelastic behavior of PGS dielectric elastomer upon degradation,” in SENSORS, 2015 IEEE, 2015, pp. 14.Google Scholar
Yang, J., Webb, A. R., and Ameer, G. A., “Novel citric acid-based biodegradable elastomers for tissue engineering,” Advanced Materials, 16(6), pp. 511516, 2004.Google Scholar
Yang, J., Webb, A. R., Pickerill, S. J., Hageman, G., and Ameer, G. A., “Synthesis and evaluation of poly(diol citrate) biodegradable elastomers,” Biomaterials, 27(9), pp. 18891898, 2006.Google Scholar
Hwang, S.-W., Lee, C. H., Cheng, H., Jeong, J.-W., Kang, S.-K., Kim, J.-H., Shin, J., Yang, J., Liu, Z., Ameer, G. A., Huang, Y., and Rogers, J. A., “Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors,” Nano Letters, 15(5), pp. 28012808, 2015.Google Scholar
Reed, R. B., Ladner, D. A., Higgins, C. P., Westerhoff, P., and Ranville, J. F., “Solubility of nano-zinc oxide in environmentally and biologically important matrices,” Environmental Toxicology and Chemistry, 31(1), pp. 9399, 2012.Google Scholar
Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Shi, H., Yeh, J. I., Zink, J. I., and Nel, A. E., “Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties,” ACS Nano, 2(10), pp. 21212134, 2008.Google Scholar
Raghupathi, K. R., Koodali, R. T., and Manna, A. C., “Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles,” Langmuir, 27(7), pp. 40204028, 2011.Google Scholar
Janotti, A. and Van de Walle, C. G., “Fundamentals of zinc oxide as a semiconductor,” Reports on Progress in Physics, 72(12), p. 126501, 2009.Google Scholar
Roy, S. and Basu, S., “Improved zinc oxide film for gas sensor applications,” Bulletin of Materials Science, 25(6), pp. 513515, 2002.Google Scholar
Wang, Z. L. and Song, J., “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science, 312(5771), pp. 242246, 2006.Google Scholar
Mejias, J. A., Berry, A. J., Refson, K., and Fraser, D. G., “The kinetics and mechanism of MgO dissolution,” Chemical Physics Letters, 314(5–6), pp. 558563, 1999.Google Scholar
Fedoročková, A. and Raschman, P., “Effects of pH and acid anions on the dissolution kinetics of MgO,” Chemical Engineering Journal, 143(1–3), pp. 265272, 2008.Google Scholar
Fontanella, J., Andeen, C., and Schuele, D., “Low‐frequency dielectric constants of α‐quartz, sapphire, MgF2, and MgO,” Journal of Applied Physics, 45(7), pp. 28522854, 1974.Google Scholar
Yan, L., Lopez, C. M., Shrestha, R. P., Irene, E. A., Suvorova, A. A., and Saunders, M., “Magnesium oxide as a candidate high-κ gate dielectric,” Applied Physics Letters, 88(14), p. 142901, 2006.Google Scholar
Posadas, A., Walker, F. J., Ahn, C. H., Goodrich, T. L., Cai, Z., and Ziemer, K. S., “Epitaxial MgO as an alternative gate dielectric for SiC transistor applications,” Applied Physics Letters, 92(23), p. 233511, 2008.Google Scholar
Irokawa, Y., Nakano, Y., Ishiko, M., Kachi, T., Kim, J., Ren, F., Gila, B. P., Onstine, A. H., Abernathy, C. R., Pearton, S. J., Pan, C.-C., Chen, G.-T., and Chyi, J.-I., “MgO/p-GaN enhancement mode metal-oxide semiconductor field-effect transistors,” Applied Physics Letters, 84(15), pp. 29192921, 2004.Google Scholar
Jagannathan, H., Narayanan, V., and Brown, S., “Engineering high dielectric constant materials for band-edge CMOS applications,” ECS Transactions, 16(5), pp. 1926, 2008.Google Scholar
Villota, R., Hawkes, J. G., and Cochrane, H., “Food applications and the toxicological and nutritional implications of amorphous silicon dioxide,” C R C Critical Reviews in Food Science and Nutrition, 23(4), pp. 289321, 1986.Google Scholar
Shahram, M. G., Benjamin, W. T., Ronald, E. U., Carina, O., Thomas, K., Mike, B., Ralph, M., and Kirkpatrick, C. J., “Collagen-embedded hydroxylapatite–beta-tricalcium phosphate–silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth,” Biomedical Materials, 5(2), p. 025004, 2010.Google Scholar
Giannoudis, P. V., Dinopoulos, H., and Tsiridis, E., “Bone substitutes: An update,” Injury, 36(3, Supplement), pp. S20S27, 2005.Google Scholar
Li, G., Feng, S., and Zhou, D., “Magnetic bioactive glass ceramic in the system CaO–P2O5–SiO2–MgO–CaF2–MnO2–Fe2O3 for hyperthermia treatment of bone tumor,” Journal of Materials Science: Materials in Medicine, 22(10), pp. 21972206, 2011.Google Scholar
Wang, T. W., Wu, H. C., Wang, W. R., Lin, F. H., Lou, P. J., Shieh, M. J., and Young, T. H., “The development of magnetic degradable DP‐bioglass for hyperthermia cancer therapy,” Journal of Biomedical Materials Research Part A, 83(3), pp. 828837, 2007.Google Scholar
Martin, F. J., Melnik, K., West, T., Shapiro, J., Cohen, M., Boiarski, A. A., and Ferrari, M., “Acute toxicity of intravenously administered microfabricated silicon dioxide drug delivery particles in mice,” Drugs in R & D, 6(2), pp. 7181, 2005.Google Scholar
Li, Y., Liu, Y.-Z., Long, T., Yu, X.-B., Tang, T. T., Dai, K.-R., Tian, B., Guo, Y.-P., and Zhu, Z.-A., “Mesoporous bioactive glass as a drug delivery system: fabrication, bactericidal properties and biocompatibility,” Journal of Materials Science: Materials in Medicine, 24(8), pp. 19511961, 2013.Google Scholar
Anglin, E. J., Cheng, L., Freeman, W. R., and Sailor, M. J., “Porous silicon in drug delivery devices and materials,” Advanced Drug Delivery Reviews, 60(11), pp. 12661277, 2008.Google Scholar
Birchall, J. D. and Chappell, J. S., “The chemistry of aluminum and silicon in relation to Alzheimer’s disease,” Clin Chem, 34(2), pp. 265267, 1988.Google Scholar
Finnie, K. S., Waller, D. J., Perret, F. L., Krause-Heuer, A. M., Lin, H. Q., Hanna, J. V., and Barbé, C. J., “Biodegradability of sol–gel silica microparticles for drug delivery,” Journal of Sol–Gel Science and Technology, 49(1), pp. 1218, 2009.Google Scholar
Kang, S. K., Hwang, S. W., Cheng, H., Yu, S., Kim, B. H., Kim, J. H., Huang, Y., and Rogers, J. A., “Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics,” Advanced Functional Materials, 24(28), pp. 44274434, 2014.Google Scholar
Bal, B. S. and Rahaman, M. N., “Orthopedic applications of silicon nitride ceramics,” Acta Biomaterialia, 8(8), pp. 28892898, 2012.Google Scholar
Olofsson, J., Grehk, T. M., Berlind, T., Persson, C., Jacobson, S., and Engqvist, H., “Evaluation of silicon nitride as a wear resistant and resorbable alternative for total hip joint replacement,” Biomatter, 2(2), pp. 94102, 2012.Google Scholar
Guedes e Silva, C. C., König, B. Jr, Carbonari, M. J., Yoshimoto, M., Allegrini, S. Jr, and Bressiani, J. C., “Bone growth around silicon nitride implants – An evaluation by scanning electron microscopy,” Materials Characterization, 59(9), pp. 1339–1341, 2008.Google Scholar
Guedes e Silva, C. C., Higa, O. Z., and Bressiani, J. C., “Cytotoxic evaluation of silicon nitride-based ceramics,” Materials Science and Engineering: C, 24(5), pp.643646, 2004.Google Scholar
Yee Chia, Y., Qiang, L., Wen Chin, L., Tsu-Jae, K., Chenming, H., Xiewen, W., Xin, G., and Ma, T. P., “Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric,” IEEE Electron Device Letters, 21(11), pp. 540542, 2000.Google Scholar
Li, F. M., Nathan, A., Wu, Y., and Ong, B. S., “Organic thin-film transistor integration using silicon nitride gate dielectric,” Applied Physics Letters, 90(13), p. 133514, 2007.Google Scholar
She, M., Takeuchi, H., and King, T.-J., “Silicon-nitride as a tunnel dielectric for improved SONOS-type flash memory,” IEEE Electron Device Letters, 24(5), pp. 309311, 2003.Google Scholar
Aozasa, H., Fujiwara, I., and Komatsu, Y., “Analysis of carrier traps in Si3N4 in oxide/nitride/oxide for metal/oxide/nitride/oxide/silicon nonvolatile memory,” Japanese Journal of Applied Physics, 38(3R), p. 1441, 1999.Google Scholar
Whitehead, M. A., Fan, D., Mukherjee, P., Akkaraju, G. R., Canham, L. T., and Coffer, J. L., “High-Porosity poly(ε-caprolactone)/mesoporous silicon scaffolds: calcium phosphate deposition and biological response to bone precursor cells,” Tissue Engineering Part A, 14(1), pp. 195206, 2008.Google Scholar
Liang, D., Wang, J., and Wang, Y., “Difference in dissolution between germanium and zinc during the oxidative pressure leaching of sphalerite,” Hydrometallurgy, 95(1–2), pp. 57, 2009.Google Scholar
Harvey, W. W. and Gatos, H. C., “The reaction of germanium with aqueous solutions: I. Dissolution kinetics in water containing dissolved oxygen,” Journal of the Electrochemical Society, 105(11), pp. 654660, 1958.Google Scholar
Kang, S.-K., Park, G., Kim, K., Hwang, S.-W., Cheng, H., Shin, J., Chung, S., Kim, M., Yin, L., Lee, J. C., Lee, K.-M., and Rogers, J. A., “Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics,” ACS Applied Materials & Interfaces, 7(17), pp. 92979305, 2015.Google Scholar
Versieck, J. and McCall, J. T., “Trace elements in human body fluids and tissues,” CRC Critical Reviews in Clinical Laboratory Sciences, 22(2), pp. 97184, 1985.Google Scholar
Pennington, J. A., “Silicon in foods and diets,” Food Addit Contam, 8(1), pp. 97118, 1991.Google Scholar
Taylor, G. A., Newens, A. J., Edwardson, J. A., Kay, D. W., and Forster, D. P., “Alzheimer’s disease and the relationship between silicon and aluminium in water supplies in northern England,” J Epidemiol Community Health, 49(3), pp. 323324, 1995.Google Scholar
Jugdaohsingh, R., Anderson, S. H., Tucker, K. L., Elliott, H., Kiel, D. P., Thompson, R. P., and Powell, J. J., “Dietary silicon intake and absorption,” Am J Clin Nutr, 75(5), pp. 887893, 2002.CrossRefGoogle ScholarPubMed
Chen, F., Cole, P., Wen, L., Mi, Z., and Trapido, E. J., “Estimates of trace element intakes in Chinese farmers,” J Nutr, 124(2), pp. 196201, 1994.Google Scholar
Anasuya, A., Bapurao, S., and Paranjape, P. K., “Fluoride and silicon intake in normal and endemic fluorotic areas,” J Trace Elem Med Biol, 10(3), pp. 149155, 1996.Google Scholar
Hwang, S.-W., Park, G., Edwards, C., Corbin, E. A., Kang, S.-K., Cheng, H., Song, J.-K., Kim, J.-H., Yu, S., Ng, J., Lee, J. E., Kim, J., Yee, C., Bhaduri, B., Su, Y., Omennetto, F. G., Huang, Y., Bashir, R., Goddard, L., Popescu, G., Lee, K.-M., and Rogers, J. A., “Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics,” ACS Nano, 8(6), pp. 58435851, 2014.Google Scholar
Yin, L., Farimani, A. B., Min, K., Vishal, N., Lam, J., Lee, Y. K., Aluru, N. R., and Rogers, J. A., “Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics,” Advanced Materials, 27(11), pp. 18571864, 2015.Google Scholar
Rosenberg, B., “The effect of oxygen adsorption on photo‐and semiconduction of β‐carotene,” The Journal of Chemical Physics, 34(3), pp. 812819, 1961.Google Scholar
Chen, S.-Y., Lu, Y.-Y., Shih, F.-Y., Ho, P.-H., Chen, Y.-F., Chen, C.-W., Chen, Y.-T., and Wang, W.-H., “Biologically inspired graphene–chlorophyll phototransistors with high gain,” Carbon, 63, pp. 2329, 2013.Google Scholar
Chamberlain, G., “Organic solar cells: a review,” Solar Cells, 8(1), pp. 4783, 1983.Google Scholar
Irimia-Vladu, M., Troshin, P. A., Reisinger, M., Shmygleva, L., Kanbur, Y., Schwabegger, G., Bodea, M., Schwödiauer, R., Mumyatov, A., Fergus, J. W., Razumov, V. F., Sitter, H., Sariciftci, N. S., and Bauer, S., “Biocompatible and biodegradable materials for organic field-effect transistors,” Advanced Functional Materials, 20(23), pp. 40694076, 2010.Google Scholar
Ling, M. M., Erk, P., Gomez, M., Koenemann, M., Locklin, J., and Bao, Z., “Air‐stable n‐channel organic semiconductors based on perylene diimide derivatives without strong electron withdrawing groups,” Advanced Materials, 19(8), pp. 11231127, 2007.Google Scholar
Gregg, B. A. and Cormier, R. A., “Doping molecular semiconductors: n-Type doping of a liquid crystal perylene diimide,” Journal of the American Chemical Society, 123(32), pp. 79597960, 2001.Google Scholar
Irimia-Vladu, M., Głowacki, E. D., Troshin, P. A., Schwabegger, G., Leonat, L., Susarova, D. K., Krystal, O., Ullah, M., Kanbur, Y., Bodea, M. A., Razumov, V. F., Sitter, H., Bauer, S., and Sariciftci, N. S., “Indigo – a natural pigment for high performance ambipolar organic field effect transistors and circuits,” Advanced Materials, 24(3), pp. 375380, 2012.Google Scholar
Mühl, S. and Beyer, B., “Bio-organic electronics – overview and prospects for the future,” Electronics, 3(3), pp. 444461, 2014.Google Scholar
Pan, X., Yao, P., and Jiang, M., “Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and β-carotene,” Journal of Colloid and Interface Science, 315(2), pp. 456463, 2007.Google Scholar
Bond, A. M., Marken, F., Hill, E., Compton, R. G., and Hügel, H., “The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution,” Journal of the Chemical Society, Perkin Transactions, 2, (9), pp. 17351742, 1997.Google Scholar
Ferruzzi, M. G. and Blakeslee, J., “Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives,” Nutrition Research, 27(1), pp. 112, 2007.Google Scholar
Newman, C. R., Frisbie, C. D., da Silva Filho, D. A., Brédas, J.-L., Ewbank, P. C., and Mann, K. R., “Introduction to organic thin film transistors and design of n-channel organic semiconductors,” Chemistry of Materials, 16(23), pp. 44364451, 2004.Google Scholar
Mahajan, B. K., Yu, X., Shou, W., Pan, H., and Huang, X., “Mechanically milled irregular zinc nanoparticles for printable bioresorbable electronics,” Small, 13(17), p. 1700065, 2017.Google Scholar
Shou, W., Mahajan, B. K., Ludwig, B., Yu, X., Staggs, J., Huang, X., and Pan, H., “Low‐cost manufacturing of bioresorbable conductors by evaporation–condensation‐mediated laser printing and sintering of Zn nanoparticles,” Advanced Materials, 2017.Google Scholar
Kim, Y. J., Chun, S.-E., Whitacre, J., and Bettinger, C. J., “Self-deployable current sources fabricated from edible materials,” Journal of Materials Chemistry B, 1(31), pp. 37813788, 2013.Google Scholar
Jia, X., Yang, Y., Wang, C., Zhao, C., Vijayaraghavan, R., MacFarlane, D. R., Forsyth, M., and Wallace, G. G., “Biocompatible ionic liquid–biopolymer electrolyte-enabled thin and compact magnesium–air batteries,” ACS Applied Materials & Interfaces, 6(23), pp. 2111021117, 2014.Google Scholar
Tsang, M., Armutlulu, A., Martinez, A. W., Allen, S. A. B., and Allen, M. G., “Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: A microfabricated power source for transient implantable devices,” Microsystems & Nanoengineering, 1, p. 15024, 2015.Google Scholar
Pal, R. K., Farghaly, A. A., Wang, C., Collinson, M. M., Kundu, S. C., and Yadavalli, V. K., “Conducting polymer–silk biocomposites for flexible and biodegradable electrochemical sensors,” Biosensors and Bioelectronics, 81, pp. 294302, 2016.Google Scholar
Luo, M., Martinez, A. W., Song, C., Herrault, F., and Allen, M. G., “A microfabricated wireless RF pressure sensor made completely of biodegradable materials,” Journal of Microelectromechanical Systems, 23(1), pp. 413, 2014.Google Scholar
Tao, H., Brenckle, M. A., Yang, M., Zhang, J., Liu, M., Siebert, S. M., Averitt, R. D., Mannoor, M. S., McAlpine, M. C., Rogers, J. A., Kaplan, D. L., and Omenetto, F. G., “Silk-based conformal, adhesive, edible food sensors,” Advanced Materials, 24(8), pp. 10671072, 2012.Google Scholar
Hwang, S.-W, Kim, D.-H, Tao, H., Kim, T.-i, Kim, S., Yu, K. J., Panilaitis, B., Jeong, J.-W, Song, J.-K, Omenetto, F. G., and Rogers, J. A., “Materials and fabrication processes for transient and bioresorbable high-performance electronics,” Advanced Functional Materials, 23(33), pp. 4087–4093, 2013.Google Scholar
Kang, S.-K., Hwang, S.-W., Yu, S., Seo, J.-H., Corbin, E. A., Shin, J., Wie, D. S., Bashir, R., Ma, Z., and Rogers, J. A., “Biodegradable thin metal foils and spin-on glass materials for transient electronics,” Advanced Functional Materials, 25(12), pp. 17891797, 2015.Google Scholar
Guo, J., Liu, J., Yang, B., Zhan, G., Tang, L., Tian, H., Kang, X., Peng, H., Chen, X., and Yang, C., “biodegradable junctionless transistors with extremely simple structure,” IEEE Electron Device Letters, 36(9), pp. 908910, 2015.Google Scholar
Capelli, R., Amsden, J. J., Generali, G., Toffanin, S., Benfenati, V., Muccini, M., Kaplan, D. L., Omenetto, F. G., and Zamboni, R., “Integration of silk protein in organic and light-emitting transistors,” Organic Electronics, 12(7), pp. 11461151, 2011.Google Scholar
Irimia-Vladu, M., Sariciftci, N. S., and Bauer, S., “Exotic materials for bio-organic electronics,” Journal of Materials Chemistry, 21(5), pp. 13501361, 2011.Google Scholar
Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E. P., “High-resolution inkjet printing of all-polymer transistor circuits,” Science, 290(5499), pp. 21232126, 2000.Google Scholar
de Gans, B. J., Duineveld, P. C., and Schubert, U. S., “Inkjet printing of polymers: state of the art and future developments,” Advanced Materials, 16(3), pp. 203213, 2004.Google Scholar
Tekin, E., Smith, P. J., and Schubert, U. S., “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles,” Soft Matter, 4(4), pp. 703713, 2008.Google Scholar
Seung, H. K., Heng, P., Costas, P. G., Christine, K. L., Jean, M. J. F., and Dimos, P., “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology, 18(34), p. 345202, 2007.Google Scholar
Rill, M. S., Plet, C., Thiel, M., Staude, I., von Freymann, G., Linden, S., and Wegener, M., “Photonic metamaterials by direct laser writing and silver chemical vapour deposition,” Nat Mater, 7(7), pp. 543546, 2008.Google Scholar
Kuznetsov, A. I., Evlyukhin, A. B., Gonçalves, M. R., Reinhardt, C., Koroleva, A., Arnedillo, M. L., Kiyan, R., Marti, O., and Chichkov, B. N., “Laser fabrication of large-scale nanoparticle arrays for sensing applications,” ACS Nano, 5(6), pp. 48434849, 2011.Google Scholar
Galagan, Y., Coenen, E. W. C., Abbel, R., van Lammeren, T. J., Sabik, S., Barink, M., Meinders, E. R., Andriessen, R., and Blom, P. W. M., “Photonic sintering of inkjet printed current collecting grids for organic solar cell applications,” Organic Electronics, 14(1), pp. 3846, 2013.Google Scholar
Hosel, M. and Krebs, F. C., “Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes,” Journal of Materials Chemistry, 22(31), pp. 1568315688, 2012.Google Scholar
Han, W.-S., Hong, J.-M., Kim, H.-S., and Song, Y.-W., “Multi-pulsed white light sintering of printed Cu nanoinks,” Nanotechnology, 22(39), p. 395705, 2011.Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bioresorbable Materials and Their Application in Electronics
  • Xian Huang, Tianjin University
  • Online ISBN: 9781108290685
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Bioresorbable Materials and Their Application in Electronics
  • Xian Huang, Tianjin University
  • Online ISBN: 9781108290685
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Bioresorbable Materials and Their Application in Electronics
  • Xian Huang, Tianjin University
  • Online ISBN: 9781108290685
Available formats
×