Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T07:48:17.911Z Has data issue: false hasContentIssue false

Chapter 13 - Thalamocortical Circuits for Auditory Processing, Plasticity, and Perception

from Section 5: - Sensory Processing

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

The medial geniculate body (MGB) of the thalamus plays a critical role in transforming the dense, high-fidelity auditory coding of the brainstem and midbrain to the sparse, abstract coding used throughout the forebrain to represent the perceptual qualities and behavioral meaning of sound. Here, we review the current state of knowledge on the connectivity, functional processing, and plasticity of interconnected neural circuits linking the MGB and the auditory cortex (ACtx). We describe new findings on the activation of corticothalamic neurons prior to expected sounds and specializations for encoding sound features that unfold on slow timescales that first emerge at the level of the MGB and ACtx. We review the literature on the development and plasticity of the MGB and ACtx, with a particular emphasis on how early auditory experience and adult learning modify sound processing at the level of thalamocortical synapses, circuits, and integrated neural systems. Despite its critical role as the root of forebrain sound processing, direct recordings from anatomically or genetically identified MGB cell types are rarely performed. We conclude by identifying several important knowns and unknowns about the distinct patterns of connectivity and functional specializations of the ventral, dorsal, and medial subdivisions of the MGB that await future investigation.

Type
Chapter
Information
The Thalamus , pp. 237 - 268
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abs, E., Poorthuis, R. B., Apelblat, D., Muhammad, K., Pardi, M. B., Enke, L., Kushinsky, D., Pu, D. L., Eizinger, M. F., Conzelmann, K. K., Spiegel, I., & Letzkus, J. J. (2018). Learning-related plasticity in dendrite-targeting layer 1 interneurons. Neuron, 100(3), 684–699.e6. https://doi.org/10.1016/j.neuron.2018.09.001Google Scholar
Aitkin, L. M., & Webster, W. R. (1972). Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. Journal of Neurophysiology, 35(3), 365380. https://doi.org/10.1152/JN.1972.35.3.365Google Scholar
Aizenberg, M., Rolón-Martínez, S., Pham, T., Rao, W., Haas, J. S., & Geffen, M. N. (2019). Projection from the amygdala to the thalamic reticular nucleus amplifies cortical sound responses. Cell Reports, 28(3), 605–615.e4. https://doi.org/10.1016/j.celrep.2019.06.050Google Scholar
Akbik, F. v., Bhagat, S. M., Patel, P. R., Cafferty, W. B. J., & Strittmatter, S. M. (2013). Anatomical plasticity of adult brain is titrated by NoGo receptor 1. Neuron, 77(5), 859866. https://doi.org/10.1016/J.NEURON.2012.12.027Google Scholar
Alford, B. R., & Ruben, R. J. (1963). Physiological, behavioral and anatomical correlates of the development of hearing in the mouse. Annals of Otology, Rhinology & Laryngology, 72(1), 237247. https://doi.org/10.1177/000348946307200119Google Scholar
Andersen, R. A., Knight, P. L., & Merzenich, M. M. (1980). The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AFF) in the cat: evidence of two largely segregated systems of connections. Journal of Comparative Neurology, 194(3), 663701.Google Scholar
Anderson, L. A., Christianson, G. B., & Linden, J. F. (2009). Stimulus-specific adaptation occurs in the auditory thalamus. Journal of Neuroscience, 29(22), 73597363. https://doi.org/10.1523/JNEUROSCI.0793-09.2009Google Scholar
Anderson, L. A., Malmierca, M. S., Wallace, M. N., & Palmer, A. R. (2006). Evidence for a direct, short latency projection from the dorsal cochlear nucleus to the auditory thalamus in the guinea pig. European Journal of Neuroscience, 24(2), 491498. https://doi.org/10.1111/j.1460-9568.2006.04930.xGoogle Scholar
Anomal, R., de Villers-Sidani, E., Merzenich, M. M., & Panizzutti, R. (2013). Manipulation of BDNF signaling modifies the experience-dependent plasticity induced by pure tone exposure during the critical period in the primary auditory cortex. PLoS ONE, 8(5). https://doi.org/10.1371/JOURNAL.PONE.0064208CrossRefGoogle ScholarPubMed
Asokan, M. M., Williamson, R. S., Hancock, K. E., & Polley, D. B. (2021). Inverted central auditory hierarchies for encoding local intervals and global temporal patterns. Current Biology, 31(8), 1762–1770.e4. https://doi.org/10.1016/J.CUB.2021.01.076CrossRefGoogle ScholarPubMed
Atiani, S., David, S. V., Elgueda, D., Locastro, M., Radtke-Schuller, S., Shamma, S. A., & Fritz, J. B. (2014). Emergent selectivity for task-relevant stimuli in higher-order auditory cortex. Neuron, 82(2), 486499. https://doi.org/10.1016/J.NEURON.2014.02.029CrossRefGoogle ScholarPubMed
Bajo, V. M., Nodal, F. R., Moore, D. R., & King, A. J. (2010). The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nature Neuroscience, 13(2), 253260. https://doi.org/10.1038/NN.2466Google Scholar
Bakin, J. S., & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536(1–2), 271286.CrossRefGoogle ScholarPubMed
Bakin, J. S., & Weinberger, N. M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences of the United States of America, 93(20), 1121911224. https://doi.org/10.1073/PNAS.93.20.11219Google Scholar
Balmer, T. S. (2016). Perineuronal nets enhance the excitability of fast-spiking neurons. ENeuro, 3(4), 745751. https://doi.org/10.1523/ENEURO.0112-16.2016CrossRefGoogle ScholarPubMed
Barbour, D. L., & Callaway, E. M. (2008). Excitatory local connections of superficial neurons in rat auditory cortex. Journal of Neuroscience, 28(44), 1117411185. https://doi.org/10.1523/JNEUROSCI.2093-08.2008Google Scholar
Barkat, T. R., Polley, D. B., & Hensch, T. K. (2011). A critical period for auditory thalamocortical connectivity. Nature Neuroscience, 14(9), 11891194. https://doi.org/10.1038/nn.2882Google Scholar
Bartlett, E. L. (2013). The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. Brain and Language, 126(1), 2948. https://doi.org/10.1016/j.bandl.2013.03.003Google Scholar
Bartlett, E. L., & Smith, P. H. (1999). Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. Journal of Neurophysiology, 81(5), 19992016. https://doi.org/10.1152/JN.1999.81.5.1999Google Scholar
Bartlett, E. L., & Wang, X. (2007). Neural representations of temporally modulated signals in the auditory thalamus of awake primates. Journal of Neurophysiology, 97(2), 10051017. https://doi.org/10.1152/JN.00593.2006CrossRefGoogle ScholarPubMed
Bartlett, E. L., & Wang, X. (2011). Correlation of neural response properties with auditory thalamus subdivisions in the awake marmoset. Journal of Neurophysiology, 105(6), 26472667. https://doi.org/10.1152/JN.00238.2010Google Scholar
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76(4), 695711. https://doi.org/10.1016/J.NEURON.2012.10.038Google Scholar
Batra, R., Kuwada, S., & Stanford, T. R. (1989). Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit. Journal of Neurophysiology, 61(2), 257268. https://doi.org/10.1152/JN.1989.61.2.257Google Scholar
Beierlein, M., Gibson, J. R., & Connors, B. W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of Neurophysiology, 90(5), 29873000. https://doi.org/10.1152/JN.00283.2003Google Scholar
Belén Pardi, M., Vogenstahl, J., Dalmay, T., Spanò, T., Pu, D. L., Naumann, L. B., Kretschmer, F., Sprekeler, H., & Letzkus, J. J. (2020). A thalamocortical top-down circuit for associative memory. Science, 370(6518), 844848. https://doi.org/10.1126/SCIENCE.ABC2399Google Scholar
Ben-Ari, Y. (2002). Excitatory actions of GABA during development: the nature of the nurture. Nature Reviews Neuroscience, 3(9), 728739. https://doi.org/10.1038/NRN920Google Scholar
Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O., & Gaiarsa, J. (1997). GABAA, NMDA and AMPA receptors: a developmentally regulated “ménage à trois.Trends in Neurosciences, 20(11), 523529. https://doi.org/10.1016/S0166-2236(97)01147-8Google Scholar
Bieszczad, K. M., & Weinberger, N. M. (2010). Representational gain in cortical area underlies increase of memory strength. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 37933798. https://doi.org/10.1073/PNAS.1000159107Google Scholar
Blundon, J. A., Bayazitov, I. T., & Zakharenko, S. S. (2011). Presynaptic gating of postsynaptically expressed plasticity at mature thalamocortical synapses. Journal of Neuroscience, 31(44), 1601216025. https://doi.org/10.1523/jneurosci.3281-11.2011Google Scholar
Blundon, J. A., Roy, N. C., Teubner, B. J. W., Yu, J., Eom, T. Y., Sample, K. J., Pani, A., Smeyne, R. J., Han, S. B., Kerekes, R. A., Rose, D. C., Hackett, T. A., Vuppala, P. K., Freeman3rd, B. B., & Zakharenko, S. S. (2017). Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling. Science, 356(6345), 13521356. https://doi.org/10.1126/science.aaf4612CrossRefGoogle ScholarPubMed
Blundon, J. A., & Zakharenko, S. S. (2013). Presynaptic gating of postsynaptic synaptic plasticity: a plasticity filter in the adult auditory cortex. Neuroscientist, 19(5), 465478. https://doi.org/10.1177/1073858413482983Google Scholar
Bonham, B. H., Cheung, S. W., Godey, B., & Schreiner, C. E. (2004). Spatial organization of frequency response areas and rate/level functions in the developing AI. Journal of Neurophysiology, 91(2), 841854. https://doi.org/10.1152/JN.00017.2003Google Scholar
Bordi, F., & LeDoux, J. E. (1994). Response properties of single units in areas of rat auditory thalamus that project to the amygdala—I. Acoustic discharge patterns and frequency receptive fields. Experimental Brain Research, 98(2), 261274. https://doi.org/10.1007/BF00228414Google Scholar
Bortone, D. S., Olsen, S. R., & Scanziani, M. (2014). Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron, 82(2), 474485. https://doi.org/10.1016/J.NEURON.2014.02.021Google Scholar
Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. Journal of Neuroscience, 25(29), 67976806. https://doi.org/10.1523/JNEUROSCI.1571-05.2005Google Scholar
Buran, B. N., von Trapp, G., & Sanes, D. H. (2014). Behaviorally gated reduction of spontaneous discharge can improve detection thresholds in auditory cortex. Journal of Neuroscience, 34(11), 40764081. https://doi.org/10.1523/JNEUROSCI.4825-13.2014Google Scholar
Cai, R., & Caspary, D. M. (2015). GABAergic inhibition shapes SAM responses in rat auditory thalamus. Neuroscience, 299, 146155. https://doi.org/10.1016/J.NEUROSCIENCE.2015.04.062Google Scholar
Cai, R., Richardson, B. D., & Caspary, D. M. (2016). Responses to predictable versus random temporally complex stimuli from single units in auditory thalamus: Impact of aging and anesthesia. Journal of Neuroscience, 36(41), 1069610706. https://doi.org/10.1523/JNEUROSCI.1454-16.2016Google Scholar
Calarco, C. A., & Robertson, R. T. (1995). Development of basal forebrain projections to visual cortex: Dil studies in rat. Journal of Comparative Neurology, 354(4), 608626. https://doi.org/10.1002/CNE.903540409Google Scholar
Calford, M. B. (1983). The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. Journal of Neuroscience, 3(11), 23502364.Google Scholar
Calford, M. B., Rajan, R., & Irvine, D. R. F. (1993). Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone-induced temporary threshold shift. Neuroscience, 55(4), 953964. https://doi.org/10.1016/0306-4522(93)90310-CGoogle Scholar
Cambiaghi, M., Grosso, A., Likhtik, E., Mazziotti, R., Concina, G., Renna, A., Sacco, T., Gordon, J. A., & Sacchetti, B. (2016). Higher-order sensory cortex drives basolateral amygdala activity during the recall of remote, but not recently learned fearful memories. Journal of Neuroscience, 36(5), 16471659. https://doi.org/10.1523/JNEUROSCI.2351-15.2016Google Scholar
Caras, M. L., & Sanes, D. H. (2015). Sustained perceptual deficits from transient sensory deprivation. Journal of Neuroscience, 35(30), 1083110842. https://doi.org/10.1523/JNEUROSCI.0837-15.2015Google Scholar
Carbajal, G. v., & Malmierca, M. S. (2018). The neuronal basis of predictive coding along the auditory pathway: from the subcortical roots to cortical deviance detection. Trends in Hearing, 22. https://doi.org/10.1177/2331216518784822Google Scholar
Carcea, I., & Froemke, R. C. (2013). Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Progress in Brain Research, 207, 6590. https://doi.org/10.1016/B978-0-444-63327-9.00003-5Google Scholar
Carcea, I., Insanally, M. N., & Froemke, R. C. (2017). Dynamics of auditory cortical activity during behavioural engagement and auditory perception. Nature Communications, 8. https://doi.org/10.1038/NCOMMS14412Google Scholar
Carceller, H., Guirado, R., Ripolles-Campos, E., Teruel-Marti, V., & Nacher, J. (2020). Perineuronal nets regulate the inhibitory perisomatic input onto parvalbumin interneurons and c activity in the prefrontal cortex. Journal of Neuroscience, 40(26), 50085018. https://doi.org/10.1523/JNEUROSCI.0291-20.2020Google Scholar
Carmel, P. W., & Starr, A. (1963). Acoustic and nonacoustic factors modifying middle-ear muscle activity in waking cats. Journal of Neurophysiology, 26, 598616. https://doi.org/10.1152/JN.1963.26.4.598Google Scholar
Chambers, A. R., Resnik, J., Yuan, Y., Whitton, J. P., Edge, A. S., Liberman, M. C., & Polley, D. B. (2016). Central gain restores auditory processing following near-complete cochlear denervation. Neuron, 89(4), 867879. https://doi.org/10.1016/j.neuron.2015.12.041Google Scholar
Chambers, A. R., Salazar, J. J., & Polley, D. B. (2016). Persistent thalamic sound processing despite profound cochlear denervation. Frontiers in Neural Circuits, 10, 72. https://doi.org/10.3389/fncir.2016.00072Google Scholar
Chang, E. F., Bao, S., Imaizumi, K., Schreiner, C. E., & Merzenich, M. M. (2005). Development of spectral and temporal response selectivity in the auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 102(45), 1646016465. https://doi.org/10.1073/PNAS.0508239102Google Scholar
Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498502. https://doi.org/10.1126/SCIENCE.1082163Google Scholar
Chattopadhyaya, B., di Cristo, G., Higashiyama, H., Knott, G. W., Kuhlman, S. J., Welker, E., & Huang, Z. J. (2004). Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period. Journal of Neuroscience, 24(43), 95989611. https://doi.org/10.1523/JNEUROSCI.1851-04.2004CrossRefGoogle ScholarPubMed
Chavez, C., & Zaborszky, L. (2017). Basal forebrain cholinergic-auditory cortical network: Primary versus nonprimary auditory cortical areas. Cerebral Cortex, 27(3), 23352347. https://doi.org/10.1093/CERCOR/BHW091Google Scholar
Chen, M. S., Huber, A. B., van der Haar, M. E. D., Frank, M., Schnell, L., Spillmann, A. A., Christ, F., & Schwab, M. E. (2000). NoGo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature, 403(6768), 434439. https://doi.org/10.1038/35000219Google Scholar
Chen, R., Puzerey, P. A., Roeser, A. C., Riccelli, T. E., Podury, A., Maher, K., Farhang, A. R., & Goldberg, J. H. (2019). Songbird ventral pallidum sends diverse performance error signals to dopaminergic midbrain. Neuron, 103(2), 266–276.e4. https://doi.org/10.1016/J.NEURON.2019.04.038Google Scholar
Chen, X., Sun, Y. C., Zhan, H., Kebschull, J. M., Fischer, S., Matho, K., Huang, Z. J., Gillis, J., & Zador, A. M. (2019). High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell, 179(3), 772–786.e19. https://doi.org/10.1016/J.CELL.2019.09.023Google Scholar
Cho, J. H., Bayazitov, I. T., Meloni, E. G., Myers, K. M., Carlezon, W. A., Zakharenko, S. S., & Bolshakov, V. Y. (2012). Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala. Nature Neuroscience, 15(1), 113122. https://doi.org/10.1038/NN.2993Google Scholar
Cho, J. H., Deisseroth, K., & Bolshakov, V. Y. (2013). Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron, 80(6), 14911507. https://doi.org/10.1016/J.NEURON.2013.09.025Google Scholar
Chorghay, Z., Káradóttir, R. T., & Ruthazer, E. S. (2018). White matter plasticity keeps the brain in tune: axons conduct while glia wrap. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/FNCEL.2018.00428Google Scholar
Chun, S., Bayazitov, I. T., Blundon, J. A., & Zakharenko, S. S. (2013). Thalamocortical long-term potentiation becomes gated after the early critical period in the auditory cortex. Journal of Neuroscience, 33(17), 73457357. https://doi.org/10.1523/jneurosci.4500-12.2013CrossRefGoogle ScholarPubMed
Cisneros-Franco, J. M., & de Villers-Sidani, É. (2019). Reactivation of critical period plasticity in adult auditory cortex through chemogenetic silencing of parvalbumin-positive interneurons. Proceedings of the National Academy of Sciences of the United States of America, 116(52), 2632926331. https://doi.org/10.1073/PNAS.1913227117Google Scholar
Clancy, B., & Cauller, L. J. (1999). Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex. Journal of Comparative Neurology, 407(2), 275286.Google Scholar
Clancy, B., Silva-Filho, M., & Friedlander, M. J. (2001). Structure and projections of white matter neurons in the postnatal rat visual cortex. Journal of Comparative Neurology, 434(2), 233252. https://doi.org/10.1002/CNE.1174Google Scholar
Clayton, K. K., Williamson, R. S., Hancock, K. E., Tasaka, G. I., Mizrahi, A., Hackett, T. A., & Polley, D. B. (2021). Auditory corticothalamic neurons are recruited by motor preparatory inputs. Current Biology, 31(2), 310–321.e5. https://doi.org/10.1016/j.cub.2020.10.027Google Scholar
Cohen-Kashi Malina, K., Tsivourakis, E., Kushinsky, D., Apelblat, D., Shtiglitz, S., Zohar, E., Sokoletsky, M., Tasaka, G., Mizrahi, A., Lampl, I., & Spiegel, I. (2021). NDNF interneurons in layer 1 gain-modulate whole cortical columns according to an animal’s behavioral state. Neuron, 109(13), 2150–2164.e5. https://doi.org/10.1016/J.NEURON.2021.05.001Google Scholar
Crandall, S. R., Cruikshank, S. J., & Connors, B. W. (2015). A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron, 86(3), 768782. https://doi.org/10.1016/J.NEURON.2015.03.040Google Scholar
Cruikshank, S. J., Urabe, H., Nurmikko, A. v., & Connors, B. W. (2010). Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron, 65(2), 230245. https://doi.org/10.1016/J.NEURON.2009.12.025Google Scholar
de La Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2006). Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions. Journal of Comparative Neurology, 496(1), 7296. https://doi.org/10.1002/CNE.20924Google Scholar
de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2012). Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anatomical Record, 295(5), 822836. https://doi.org/10.1002/AR.22454Google Scholar
de Villers-Sidani, E., Chang, E. F., Bao, S., & Merzenich, M. M. (2007). Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. Journal of Neuroscience, 27(1), 180189. https://doi.org/10.1523/jneurosci.3227-06.2007Google Scholar
de Villers-Sidani, E., & Merzenich, M. M. (2011). Lifelong plasticity in the rat auditory cortex. Basic mechanisms and role of sensory experience. Progress in Brain Research, 191, 119131. https://doi.org/10.1016/B978-0-444-53752-2.00009-6Google Scholar
del Río, J. A., Martínez, A., Auladell, C., & Soriano, E. (2000). Developmental history of the subplate and developing white matter in the murine neocortex. Neuronal organization and relationship with the main afferent systems at embryonic and perinatal stages. Cerebral Cortex, 10(8), 784801.Google Scholar
Deng, R., Kao, J. P. Y., & Kanold, P. O. (2017). Distinct translaminar glutamatergic circuits to GABAergic interneurons in the neonatal auditory cortex. Cell Reports, 19(6), 11411150. https://doi.org/10.1016/J.CELREP.2017.04.044Google Scholar
Diamond, I. T., Jones, E. G., & Powell, T. P. S. (1969). The projection of the auditory cortex upon the diencephalon and brain stem in the cat. Brain Research, 15(2), 305340. https://doi.org/10.1016/0006-8993(69)90160-7Google Scholar
Dityatev, A., Brückner, G., Dityateva, G., Grosche, J., Kleene, R., & Schachner, M. (2007). Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Developmental Neurobiology, 67(5), 570588. https://doi.org/10.1002/DNEU.20361Google Scholar
Doron, N. N., & LeDoux, J. E. (1999). Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. Journal of Comparative Neurology, 412(3), 383409.Google Scholar
Dorrn, A. L., Yuan, K., Barker, A. J., Schreiner, C. E., & Froemke, R. C. (2010). Developmental sensory experience balances cortical excitation and inhibition. Nature, 465(7300), 932936. https://doi.org/10.1038/NATURE09119Google Scholar
Downer, J. D., Niwa, M., & Sutter, M. L. (2017). Hierarchical differences in population coding within auditory cortex. Journal of Neurophysiology, 118(2), 717731. https://doi.org/10.1152/JN.00899.2016Google Scholar
Edeline, J. M., Pham, P., & Weinberger, N. M. (1993). Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107(4), 539551.Google Scholar
Edeline, J.-M., & Weinberger, N. M. (1991a). Subcortical adaptive filtering in the auditory system: Associative receptive field plasticity in the dorsal medial geniculate body. Behavioral Neuroscience, 105(1), 154175. https://doi.org/10.1037//0735-7044.105.1.154CrossRefGoogle ScholarPubMed
Edeline, J.-M., & Weinberger, N. M. (1991b). Thalamic short-term plasticity in the auditory system: Associative retuning of receptive fields in the ventral medial geniculate body. Behavioral Neuroscience, 105(5), 618639. https://doi.org/10.1037//0735-7044.105.5.618Google Scholar
Edeline, J.-M., & Weinberger, N. M. (1992). Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behavioral Neuroscience, 106(1), 81105. https://doi.org/10.1037//0735-7044.106.1.81Google Scholar
Eggermont, J. J., & Komiya, H. (2000). Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hearing Research, 142(1–2), 89101. https://doi.org/10.1016/S0378-5955(00)00024-1Google Scholar
Ehret, G. (1976). Development of absolute auditory thresholds in the house mouse (Mus musculus). Journal of the American Audiology Society, 1(5), 179184. https://pubmed.ncbi.nlm.nih.gov/956003/Google Scholar
Ehret, G., & Romand, R. (1992). Development of tone response thresholds, latencies and tuning in the mouse inferior colliculus. Brain Research Developmental Brain Research, 67(2), 317326. https://doi.org/10.1016/0165-3806(92)90233-MGoogle Scholar
Elgueda, D., Duque, D., Radtke-Schuller, S., Yin, P., David, S. V., Shamma, S. A., & Fritz, J. B. (2019). State-dependent encoding of sound and behavioral meaning in a tertiary region of the ferret auditory cortex. Nature Neuroscience, 22(3), 447459. https://doi.org/10.1038/S41593-018-0317-8Google Scholar
Eliades, S. J., & Wang, X. (2008). Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature, 453(7198), 11021106. https://doi.org/10.1038/NATURE06910Google Scholar
Engineer, N. D., Riley, J. R., Seale, J. D., Vrana, W. A., Shetake, J. A., Sudanagunta, S. P., Borland, M. S., & Kilgard, M. P. (2011). Reversing pathological neural activity using targeted plasticity. Nature, 470(7332), 101104. https://doi.org/10.1038/nature09656Google Scholar
Fagiolini, M., Fritschy, J. M., Löw, K., Möhler, H., Rudolph, U., & Hensch, T. K. (2004). Specific GABAA circuits for visual cortical plasticity. Science, 303(5664), 16811683. https://doi.org/10.1126/SCIENCE.1091032Google Scholar
Fagiolini, M., & Hensch, T. K. (2000). Inhibitory threshold for critical-period activation in primary visual cortex. Nature, 404(6774), 183186. https://doi.org/10.1038/35004582Google Scholar
Fan, L. Z., Kheifets, S., Böhm, U. L., Wu, H., Piatkevich, K. D., Xie, M. E., Parot, V., Ha, Y., Evans, K. E., Boyden, E. S., Takesian, A. E., & Cohen, A. E. (2020). All-optical electrophysiology reveals the role of lateral inhibition in sensory processing in cortical layer 1. Cell, 180(3), 521–535.e18. https://doi.org/10.1016/J.CELL.2020.01.001Google Scholar
Favuzzi, E., Marques-Smith, A., Deogracias, R., Winterflood, C. M., Sánchez-Aguilera, A., Mantoan, L., Maeso, P., Fernandes, C., Ewers, H., & Rico, B. (2017). Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron, 95(3), 639–655.e10. https://doi.org/10.1016/J.NEURON.2017.06.028Google Scholar
Feliciano, M., & Potashner, S. J. (1995). Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. Journal of Neurochemistry, 65(3), 13481357. https://doi.org/10.1046/J.1471-4159.1995.65031348.XGoogle Scholar
Fields, R. D. (2015). A new mechanism of nervous system plasticity: activity-dependent myelination. Nature Reviews Neuroscience, 16(12), 756767. https://doi.org/10.1038/NRN4023Google Scholar
Finney, E. M., Stone, J. R., & Shatz, C. J. (1998). Major glutamatergic projection from subplate into visual cortex during development. Journal of Comparative Neurology, 398(1), 105118.Google Scholar
Firth, S. I., Wang, C. T., & Feller, M. B. (2005). Retinal waves: mechanisms and function in visual system development. Cell Calcium, 37(5 Spec. Iss.), 425432. https://doi.org/10.1016/J.CECA.2005.01.010Google Scholar
Friauf, E. (2000). Development of chondroitin sulfate proteoglycans in the central auditory system of rats correlates with acquisition of mature properties. Audiology and Neuro-Otology, 5(5), 251262. https://doi.org/10.1159/000013889Google Scholar
Fritz, J. B., Elhilali, M., & Shamma, S. A. (2005). Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. Journal of Neuroscience, 25(33), 76237635.Google Scholar
Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6(11), 12161223. https://doi.org/10.1038/NN1141Google Scholar
Froemke, R. C., Carcea, I., Barker, A. J., Yuan, K., Seybold, B. A., Martins, A. R., Zaika, N., Bernstein, H., Wachs, M., Levis, P. A., Polley, D. B., Merzenich, M. M., & Schreiner, C. E. (2013). Long-term modification of cortical synapses improves sensory perception. Nature Neuroscience, 16(1), 7988. https://doi.org/10.1038/nn.3274CrossRefGoogle ScholarPubMed
Froemke, R. C., Merzenich, M. M., & Schreiner, C. E. (2007). A synaptic memory trace for cortical receptive field plasticity. Nature, 450(7168), 425429. https://doi.org/10.1038/nature06289Google Scholar
Fu, Y., Tucciarone, J. M., Espinosa, J. S., Sheng, N., Darcy, D. P., Nicoll, R. A., Huang, Z. J., & Stryker, M. P. (2014). A cortical circuit for gain control by behavioral state. Cell, 156(6), 11391152. https://doi.org/10.1016/j.cell.2014.01.050Google Scholar
Fünfschilling, U., Supplie, L. M., Mahad, D., Boretius, S., Saab, A. S., Edgar, J., Brinkmann, B. G., Kassmann, C. M., Tzvetanova, I. D., Möbius, W., Diaz, F., Meijer, D., Suter, U., Hamprecht, B., Sereda, M. W., Moraes, C. T., Frahm, J., Goebbels, S., & Nave, K. A. (2012). Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 485(7399), 517521. https://doi.org/10.1038/NATURE11007Google Scholar
Gao, L., Kostlan, K., Wang, Y., & Wang, X. (2016). Distinct subthreshold mechanisms underlying rate-coding principles in primate auditory cortex. Neuron, 91(4), 905919. https://doi.org/10.1016/J.NEURON.2016.07.004Google Scholar
Gao, X., & Wehr, M. (2015). A coding transformation for temporally structured sounds within auditory cortical neurons. Neuron, 86(1), 292303. https://doi.org/10.1016/J.NEURON.2015.03.004Google Scholar
Ghimire, M., Cai, R., Ling, L., Hackett, T. A., & Caspary, D. M. (2020). Nicotinic receptor subunit distribution in auditory cortex: impact of aging on receptor number and function. Journal of Neuroscience, 40(30), 57245739. https://doi.org/10.1523/JNEUROSCI.0093-20.2020Google Scholar
Ghosh, A., Antonini, A., McConnell, S. K., & Shatz, C. J. (1990). Requirement for subplate neurons in the formation of thalamocortical connections. Nature, 347(6289), 179181. https://doi.org/10.1038/347179A0Google Scholar
Gianfranceschi, L., Siciliano, R., Walls, J., Morales, B., Kirkwood, A., Huang, Z. J., Tonegawa, S., & Maffei, L. (2003). Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 1248612491. https://doi.org/10.1073/PNAS.1934836100Google Scholar
Gibson, J. R., Beierlein, M., & Connors, B. W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402(6757), 7579. https://doi.org/10.1038/47035Google Scholar
Goyer, D., Silveira, M. A., George, A. P., Beebe, N. L., Edelbrock, R. M., Malinski, P. T., Schofield, B. R., & Roberts, M. T. (2019). A novel class of inferior colliculus principal neurons labeled in vasoactive intestinal peptide-cre mice. eLife, 8. https://doi.org/10.7554/ELIFE.43770Google Scholar
Grant, E., Hoerder-Suabedissen, A., & Molnár, Z. (2012). Development of the corticothalamic projections. Frontiers in Neuroscience, 6, 114. https://doi.org/10.3389/FNINS.2012.00053Google Scholar
Guo, W., Clause, A. R., Barth-Maron, A., & Polley, D. B. (2017). A corticothalamic circuit for dynamic switching between feature detection and discrimination. Neuron, 95(1), 180–194.e5. https://doi.org/10.1016/j.neuron.2017.05.019Google Scholar
Guo, W., Robert, B., & Polley, D. B. (2019). The cholinergic basal forebrain links auditory stimuli with delayed reinforcement to support learning. Neuron, 103(6), 1164–1177.e6. https://doi.org/10.1016/j.neuron.2019.06.024Google Scholar
Gurung, B., & Fritzsch, B. (2004). Time course of embryonic midbrain and thalamic auditory connection development in mice as revealed by carbocyanine dye tracing. Journal of Comparative Neurology, 479, 309327. https://doi.org/10.1002/cne.20328Google Scholar
Hackett, T. A. (2011). Information flow in the auditory cortical network. Hearing Research, 271(1–2), 133146. https://doi.org/10.1016/j.heares.2010.01.011Google Scholar
Hackett, T. A. (2015). Anatomic organization of the auditory cortex. Handbook of Clinical Neurology, 129, 2753. https://doi.org/10.1016/B978-0-444-62630-1.00002-0Google Scholar
Hackett, T. A., Barkat, T. R., O’Brien, B. M., Hensch, T. K., & Polley, D. B. (2011). Linking topography to tonotopy in the mouse auditory thalamocortical circuit. Journal of Neuroscience, 31(8), 29832995. https://doi.org/10.1523/jneurosci.5333-10.2011Google Scholar
Hackett, T. A., Clause, A. R., Takahata, T., Hackett, N. J., & Polley, D. B. (2016). Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Structure & Function, 221(5), 26192673. https://doi.org/10.1007/S00429-015-1062-3Google Scholar
Hackett, T. A., Guo, Y., Clause, A., Hackett, N. J., Garbett, K., Zhang, P., Polley, D. B., & Mirnics, K. (2015). Transcriptional maturation of the mouse auditory forebrain. BMC Genomics, 16(1), 606. https://doi.org/10.1186/s12864-015-1709-8Google Scholar
Halassa, M. M., & Sherman, S. M. (2019). Thalamocortical circuit motifs: a general framework. Neuron, 103(5), 762770. https://doi.org/10.1016/J.NEURON.2019.06.005Google Scholar
Hamilton, L. S., Oganian, Y., Hall, J., & Chang, E. F. (2021). Parallel and distributed encoding of speech across human auditory cortex. Cell, 184(18), 4626–4639.e13. https://doi.org/10.1016/J.CELL.2021.07.019Google Scholar
Han, Y. K., Köver, H., Insanally, M. N., Semerdjian, J. H., & Bao, S. (2007). Early experience impairs perceptual discrimination. Nature Neuroscience, 10(9), 11911197. https://doi.org/10.1038/NN1941Google Scholar
Hanover, J. L., Huang, Z. J., Tonegawa, S., & Stryker, M. P. (1999). Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. Journal of Neuroscience, 19(22). https://doi.org/10.1523/JNEUROSCI.19-22-J0003.1999Google Scholar
Hanse, E., Seth, H., & Riebe, I. (2013). AMPA-silent synapses in brain development and pathology. Nature Reviews Neuroscience, 14(12), 839850. https://doi.org/10.1038/NRN3642Google Scholar
Harpaz, M., Jankowski, M. M., Khouri, L., & Nelken, I. (2021). Emergence of abstract sound representations in the ascending auditory system. Progress in Neurobiology, 202. https://doi.org/10.1016/J.PNEUROBIO.2021.102049Google Scholar
Härtig, W., Brauer, K., & Brückner, G. (1992). Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. NeuroReport, 3(10), 869872. https://doi.org/10.1097/00001756-199210000-00012Google Scholar
Hensch, T. K. (2004). Critical period regulation. Annual Review of Neuroscience, 27, 549579. https://doi.org/10.1146/ANNUREV.NEURO.27.070203.144327Google Scholar
Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience, 6(11), 877888. https://doi.org/10.1038/NRN1787Google Scholar
Hensch, T. K., Fagiolini, M., Mataga, N., Stryker, M. P., Baekkeskov, S., & Kash, S. F. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science, 282(5393), 15041508. https://doi.org/10.1126/SCIENCE.282.5393.1504Google Scholar
Heuer, H., Christ, S., Friedrichsen, S., Brauer, D., Winckler, M., Bauer, K., & Raivich, G. (2003). Connective tissue growth factor: a novel marker of layer VII neurons in the rat cerebral cortex. Neuroscience, 119(1), 4352.Google Scholar
Hoerder-Suabedissen, A., Hayashi, S., Upton, L., Nolan, Z., Casas-Torremocha, D., Grant, E., Viswanathan, S., Kanold, P. O., Clascá, F., Kim, Y., & Molnár, Z. (2018). Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cerebral Cortex, 28(5), 1882–1897. https://doi.org/10.1093/CERCOR/BHY036Google Scholar
Hoerder-Suabedissen, A., & Molnár, Z. (2013). Molecular diversity of early-born subplate neurons. Cerebral Cortex, 23(6), 14731483. https://doi.org/10.1093/CERCOR/BHS137CrossRefGoogle ScholarPubMed
Hogan, S. C., Meyer, S. E., & Moore, D. R. (1996). Binaural unmasking returns to normal in teenagers who had otitis media in infancy. Audiology and Neuro-Otology, 1(2), 104111. https://doi.org/10.1159/000259189Google Scholar
Hooks, B. M., & Chen, C. (2007). Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron, 56(2), 312326. https://doi.org/10.1016/J.NEURON.2007.10.003Google Scholar
Horng, S., Kreiman, G., Ellsworth, C., Page, D., Blank, M., Millen, K., & Sur, M. (2009). Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development. Journal of Neuroscience, 29(43), 1367213683. https://doi.org/10.1523/JNEUROSCI.2127-09.2009Google Scholar
Huang, C. L., & Winer, J. A. (2000). Auditory thalamocortical projections in the cat: laminar and areal patterns of input. Journal of Comparative Neurology, 427(2), 302331.Google Scholar
Huang, X. (2019). Silent synapse: a new player in visual cortex critical period plasticity. Pharmacological Research, 141, 586590. https://doi.org/10.1016/J.PHRS.2019.01.031Google Scholar
Huang, Z. J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M. F., Maffei, L., & Tonegawa, S. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell, 98(6), 739755. https://doi.org/10.1016/S0092-8674(00)81509-3CrossRefGoogle ScholarPubMed
Huganir, R. L., & Nicoll, R. A. (2013). Perspective AMPARs and synaptic plasticity: the last 25 years. Neuron, 80(3), 704717. https://doi.org/10.1016/j.neuron.2013.10.025Google Scholar
Ibrahim, B. A., Murphy, C. A., Yudintsev, G., Shinagawa, Y., Banks, M. I., & Llano, D. A. (2021). Corticothalamic gating of population auditory thalamocortical transmission in mouse. eLife, 10. https://doi.org/10.7554/eLife.56645Google Scholar
Insanally, M. N., Kover, H., Kim, H., & Bao, S. (2009). Feature-dependent sensitive periods in the development of complex sound representation. Journal of Neuroscience, 29(17), 54565462. https://doi.org/10.1523/jneurosci.5311-08.2009Google Scholar
Isaac, J. T. R. (2003). Mini-review postsynaptic silent synapses: evidence and mechanisms. Neuropharmacology, 45, 450460. https://doi.org/10.1016/S0028-3908(03)00229-6Google Scholar
Isaac, J. T. R., Crair, M. C., Nicoll, R. A., & Malenka, R. C. (1997). Silent synapses during development of thalamocortical inputs. Neuron, 18(2), 269280. https://doi.org/10.1016/S0896-6273(00)80267-6Google Scholar
Isaac, J. T. R., Nicoll, R. A., & Malenka, R. C. (1995). Evidence for silent synapses: Implications for the expression of LTP. Neuron, 15(2), 427434. https://doi.org/10.1016/0896-6273(95)90046-2Google Scholar
Isaacson, J. S., & Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron, 72(2), 231243. https://doi.org/10.1016/J.NEURON.2011.09.027Google Scholar
Itami, C., Kimura, F., & Nakamura, S. (2007). Brain-derived neurotrophic factor regulates the maturation of layer 4 fast-spiking cells after the second postnatal week in the developing barrel cortex. Journal of Neuroscience, 27(9), 22412252. https://doi.org/10.1523/JNEUROSCI.3345-06.2007Google Scholar
Ito, T., & Oliver, D. L. (2012). The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus. Frontiers in Neural Circuits, 6, 19. https://doi.org/10.3389/fncir.2012.00048Google Scholar
Jaramillo, S., Borges, K., & Zador, A. M. (2014). Auditory thalamus and auditory cortex are equally modulated by context during flexible categorization of sounds. Journal of Neuroscience, 34(15), 52915301. https://doi.org/10.1523/JNEUROSCI.4888-13.2014Google Scholar
Jaramillo, S., & Zador, A. M. (2011). The auditory cortex mediates the perceptual effects of acoustic temporal expectation. Nature Neuroscience, 14(2), 246253. https://doi.org/10.1038/NN.2688Google Scholar
Ji, W., & Suga, N. (2007). Serotonergic modulation of plasticity of the auditory cortex elicited by fear conditioning. Journal of Neuroscience, 27(18), 49104918. https://doi.org/10.1523/JNEUROSCI.5528-06.2007Google Scholar
Ji, X. Y., Zingg, B., Mesik, L., Xiao, Z., Zhang, L. I., & Tao, H. W. (2016). Thalamocortical innervation pattern in mouse auditory and visual cortex: laminar and cell-type specificity. Cerebral Cortex, 26(6), 26122625. https://doi.org/10.1093/cercor/bhv099Google Scholar
Jiao, Y., Zhang, C., Yanagawa, Y., & Sun, Q. Q. (2006). Major effects of sensory experiences on the neocortical inhibitory circuits. Journal of Neuroscience, 26(34), 86918701. https://doi.org/10.1523/JNEUROSCI.2478-06.2006Google Scholar
Jones, E. G., & Burton, H. (1976). Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. Journal of Comparative Neurology, 168(2), 197247. https://doi.org/10.1002/CNE.901680203Google Scholar
Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84(2), 541577. https://doi.org/10.1152/PHYSREV.00029.2003Google Scholar
Kaas, J. H., & Hackett, T. A. (2000). Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 1179311799. https://doi.org/10.1073/PNAS.97.22.11793Google Scholar
Kalish, B. T., Barkat, T. R., Diel, E. E., Zhang, E. J., Greenberg, M. E., & Hensch, T. K. (2020). Single-nucleus RNA sequencing of mouse auditory cortex reveals critical period triggers and brakes. Proceedings of the National Academy of Sciences of the United States of America, 117(21). https://doi.org/10.1073/PNAS.1920433117Google Scholar
Kamal, B., Holman, C., & de Villers-Sidani, E. (2013). Shaping the aging brain: Role of auditory input patterns in the emergence of auditory cortical impairments. Frontiers in Systems Neuroscience, 7. https://doi.org/10.3389/FNSYS.2013.00052Google Scholar
Kamke, M. R., Brown, M., & Irvine, D. R. F. (2003). Plasticity in the tonotopic organization of the medial geniculate body in adult cats following restricted unilateral cochlear lesions. Journal of Comparative Neurology, 459(4), 355367. https://doi.org/10.1002/CNE.10586Google Scholar
Kandler, K. (2004). Activity-dependent organization of inhibitory circuits: lessons from the auditory system. Current Opinion in Neurobiology, 14(1), 96104. https://doi.org/10.1016/J.CONB.2004.01.017Google Scholar
Kanold, P. O. (2009). Subplate neurons: crucial regulators of cortical development and plasticity. Frontiers in Neuroanatomy, 3. https://doi.org/10.3389/NEURO.05.016.2009Google Scholar
Kanold, P. O., Kara, P., Reid, R. C., & Shatz, C. J. (2003). Role of subplate neurons in functional maturation of visual cortical columns. Science, 301(5632), 521525. https://doi.org/10.1126/SCIENCE.1084152Google Scholar
Kanold, P. O., & Luhmann, H. J. (2010). The subplate and early cortical circuits. Annual Review of Neuroscience, 33, 2348. https://doi.org/10.1146/ANNUREV-NEURO-060909-153244CrossRefGoogle ScholarPubMed
Kanold, P. O., & Shatz, C. J. (2006). Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron, 51(5), 627638. https://doi.org/10.1016/J.NEURON.2006.07.008Google Scholar
Katagiri, H., Fagiolini, M., & Hensch, T. K. (2007). Optimization of somatic inhibition at critical period onset in mouse visual cortex. Neuron, 53(6), 805812. https://doi.org/10.1016/J.NEURON.2007.02.026Google Scholar
Kato, H. K., Gillet, S. N., & Isaacson, J. S. (2015). Flexible sensory representations in auditory cortex driven by behavioral relevance. Neuron, 88(5), 10271039. https://doi.org/10.1016/J.NEURON.2015.10.024Google Scholar
Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 17141718.Google Scholar
Kim, H., & Bao, S. (2009). Selective increase in representations of sounds repeated at an ethological rate. Journal of Neuroscience, 29(16), 51635169. https://doi.org/10.1523/JNEUROSCI.0365-09.2009Google Scholar
Kim, J., Matney, C. J., Blankenship, A., Hestrin, S., & Brown, S. P. (2014). Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a. Journal of Neuroscience, 34(29), 96569664. https://doi.org/10.1523/JNEUROSCI.1325-14.2014Google Scholar
King, A. J. (2010). Auditory neuroscience: balancing excitation and inhibition during development. Current Biology, 20(18), R808. https://doi.org/10.1016/J.CUB.2010.07.034Google Scholar
Knudsen, E. I., Esterly, S. D., & Knudsen, P. F. (1984). Monaural occlusion alters sound localization during a sensitive period in the barn owl. Journal of Neuroscience, 4(4), 10011011. https://doi.org/10.1523/JNEUROSCI.04-04-01001.1984Google Scholar
Kotak, V. C., Breithaupt, A. D., & Sanes, D. H. (2007). Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 35503555. https://doi.org/10.1073/PNAS.0607177104Google Scholar
Kotak, V. C., Fujisawa, S., Lee, F. A., Karthikeyan, O., Aoki, C., & Sanes, D. H. (2005). Hearing loss raises excitability in the auditory cortex. Journal of Neuroscience, 25(15), 39083918. https://doi.org/10.1523/JNEUROSCI.5169-04.2005Google Scholar
Kreeger, L. J., Connelly, C. J., Mehta, P., Zemelman, B. v., & Golding, N. L. (2021). Excitatory cholecystokinin neurons of the midbrain integrate diverse temporal responses and drive auditory thalamic subdomains. Proceedings of the National Academy of Sciences of the United States of America, 118(10). https://doi.org/10.1073/pnas.2007724118Google Scholar
Kuchibhotla, K. v, Gill, J. v, Lindsay, G. W., Papadoyannis, E. S., Field, R. E., Sten, T. A., Miller, K. D., & Froemke, R. C. (2017). Parallel processing by cortical inhibition enables context-dependent behavior. Nature Neuroscience, 20(1), 6271. https://doi.org/10.1038/nn.4436Google Scholar
Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67(5), 713727. https://doi.org/10.1016/J.NEURON.2010.08.038Google Scholar
Lakatos, P., O’Connell, M. N., Barczak, A., McGinnis, T., Neymotin, S., Schroeder, C. E., Smiley, J. F., & Javitt, D. C. (2020). The thalamocortical circuit of auditory mismatch negativity. Biological Psychiatry, 87(8), 770780. https://doi.org/10.1016/J.BIOPSYCH.2019.10.029Google Scholar
Lazarus, M. S., & Josh Huang, Z. (2011). Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity. Journal of Neurophysiology, 106(2), 775787. https://doi.org/10.1152/JN.00729.2010Google Scholar
LeDoux, J. E., Farb, C. R., & Romanski, L. M. (1991). Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neuroscience Letters, 134(1), 139144. https://doi.org/10.1016/0304-3940(91)90526-YGoogle Scholar
LeDoux, J. E., Ruggiero, D. A., Forest, R., Stornetta, R., & Reis, D. J. (1987). Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. Journal of Comparative Neurology, 264(1), 123146. https://doi.org/10.1002/CNE.902640110Google Scholar
Lee, C. C. (2015). Exploring functions for the non-lemniscal auditory thalamus. Front Neural Circuits, 9, 69. https://doi.org/10.3389/fncir.2015.00069Google Scholar
Lee, C. C., & Winer, J. A. (2011). Convergence of thalamic and cortical pathways in cat auditory cortex. Hearing Research, 274(1–2), 8594. https://doi.org/10.1016/j.heares.2010.05.008Google Scholar
Lee, S. H., Hjerling-Leffler, J., Zagha, E., Fishell, G., & Rudy, B. (2010). The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. Journal of Neuroscience, 30(50), 1679616808. https://doi.org/10.1523/JNEUROSCI.1869-10.2010Google Scholar
Lensjø, K. K., Lepperød, M. E., Dick, G., Hafting, T., & Fyhn, M. (2017). Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity. Journal of Neuroscience, 37(5), 12691283. https://doi.org/10.1523/JNEUROSCI.2504-16.2016Google Scholar
Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U. (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 29062915. https://doi.org/10.1523/JNEUROSCI.3684-10.2011Google Scholar
Lesicko, A. M. H., Hristova, T. S., Maigler, K. C., & Llano, D. A. (2016). Connectional modularity of top-down and bottom-up multimodal inputs to the lateral cortex of the mouse inferior colliculus. Journal of Neuroscience, 36(43), 1103711050. https://doi.org/10.1523/JNEUROSCI.4134-15.2016Google Scholar
Lesicko, A. M. H., Sons, S. K., & Llano, D. A. (2020). Circuit mechanisms underlying the segregation and integration of parallel processing streams in the inferior colliculus. Journal of Neuroscience, 40(33), 63286344. https://doi.org/10.1523/JNEUROSCI.064620.2020Google Scholar
Letzkus, J. J., Wolff, S. B., Meyer, E. M., Tovote, P., Courtin, J., Herry, C., & Luthi, A. (2011). A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature, 480(7377), 331335. https://doi.org/10.1038/nature10674Google Scholar
Levelt, C. N., & Ḧubener, M. (2012). Critical-period plasticity in the visual cortex. Annual Review of Neuroscience, 35, 309330. https://doi.org/10.1146/ANNUREV-NEURO-061010-113813Google Scholar
Levy, R. B., & Aoki, C. (2002). α7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex. Journal of Neuroscience, 22(12), 50015015. https://doi.org/10.1523/JNEUROSCI.22-12-05001.2002Google Scholar
Liao, D., Hessler, N. A., & Malinow, R. (1995). Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature, 375(6530), 400404. https://doi.org/10.1038/375400A0Google Scholar
Liu, Y., Xin, Y., & Xu, N. long. (2021). A cortical circuit mechanism for structural knowledge-based flexible sensorimotor decision-making. Neuron, 109(12), 2009–2024.e6. https://doi.org/10.1016/J.NEURON.2021.04.014Google Scholar
Llano, D. A., & Sherman, S. M. (2008). Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems. Journal of Comparative Neurology, 507(2), 12091227. https://doi.org/10.1002/cne.21602Google Scholar
Lohse, M., Dahmen, J. C., Bajo, V. M., & King, A. J. (2021). Subcortical circuits mediate communication between primary sensory cortical areas in mice. Nature Communications, 12(1), 114. https://doi.org/10.1038/s41467-021-24200-xGoogle Scholar
Long, P., Wan, G., Roberts, M. T., & Corfas, G. (2018). Myelin development, plasticity, and pathology in the auditory system. Developmental Neurobiology, 78(2), 8092. https://doi.org/10.1002/DNEU.22538Google Scholar
López-Bendito, G., & Molnár, Z. (2003). Thalamocortical development: how are we going to get there? Nature Reviews Neuroscience, 4(4), 276289. https://doi.org/10.1038/NRN1075Google Scholar
Lu, T, Liang, L, Wang, X. (2001). Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nature Neuroscience, 4, 11311138.Google Scholar
Lu, E., Llano, D. A., & Sherman, S. M. (2009). Different distributions of calbindin and calretinin immunostaining across the medial and dorsal divisions of the mouse medial geniculate body. Hearing Research, 257(1–2), 1623. https://doi.org/10.1016/J.HEARES.2009.07.009Google Scholar
Lund, J. S., Henry, G. H., Macqueen, C. L., & Harvey, A. R. (1979). Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey. Journal of Comparative Neurology, 184(4), 599618. https://doi.org/10.1002/CNE.901840402Google Scholar
Luskin, M. B., & Shatz, C. J. (1985). Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. Journal of Neuroscience, 5(4), 10621075.Google Scholar
Maffei, A., Nelson, S. B., & Turrigiano, G. G. (2004). Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nature Neuroscience, 7(12), 13531359. https://doi.org/10.1038/NN1351Google Scholar
Maggi, L., le Magueresse, C., Changeux, J. P., & Cherubini, E. (2003). Nicotine activates immature “silent” connections in the developing hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 20592064. https://doi.org/10.1073/PNAS.0437947100Google Scholar
Malmierca, M. S., Merchán, M. A., Henkel, C. K., & Oliver, D. L. (2002). Direct projections from cochlear nuclear complex to auditory thalamus in the rat. Journal of Neuroscience, 22(24), 1089110897. https://doi.org/10.1523/jneurosci.22-24-10891.2002Google Scholar
Marie, R. L. S., & Peters, A. (1985). The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): a golgi‐electron microscopic study. Journal of Comparative Neurology, 233(2), 213235. https://doi.org/10.1002/CNE.902330205Google Scholar
Martins, A. R., & Froemke, R. C. (2015). Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex. Nature Neuroscience, 18(10), 14831492. https://doi.org/10.1038/nn.4090CrossRefGoogle ScholarPubMed
Marx, M., Qi, G., Hanganu-Opatz, I. L., Kilb, W., Luhmann, H. J., & Feldmeyer, D. (2017). Neocortical layer 6B as a remnant of the subplate—a morphological comparison. Cerebral Cortex, 27(2), 10111026. https://doi.org/10.1093/CERCOR/BHV279Google Scholar
McConnell, S. K., Ghosh, A., and Shatz, C. J. (1994). Subplate pioneers and the formation of descending connections from cerebral cortex. Journal of Neuroscience, 14(4), 18921907.Google Scholar
McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W., & Strittmatter, S. H. (2005). Neuroscience: Experience-driven plasticity of visual cortex limited by myelin and NoGo receptor. Science, 309(5744), 22222226. https://doi.org/10.1126/SCIENCE.1114362Google Scholar
McGinley, M. J., David, S. v., & McCormick, D. A. (2015). Cortical membrane potential signature of optimal states for sensory signal detection. Neuron, 87(1), 179192. https://doi.org/10.1016/J.NEURON.2015.05.038Google Scholar
Mechawar, N., & Descarries, L. (2001). The cholinergic innervation develops early and rapidly in the rat cerebral cortex: a quantitative immunocytochemical study. Neuroscience, 108(4), 555567. https://doi.org/10.1016/S0306-4522(01)00389-XGoogle Scholar
Meng, X., Kao, J. P. Y., & Kanold, P. O. (2014). Differential signaling to subplate neurons by spatially specific silent synapses in developing auditory cortex. Journal of Neuroscience, 34(26), 88558864. https://doi.org/10.1523/JNEUROSCI.0233-14.2014Google Scholar
Meng, X., Xu, Y., Kao, J. P. Y., & Kanold, P. O. (2020). Transient coupling between subplate and subgranular layers to L1 neurons before and during the critical period. BioRxiv, 2020.05.05.077784. https://doi.org/10.1101/2020.05.05.077784Google Scholar
Meyer, G., González-Hernández, T. H., & Ferres-Torres, R. (1989). The spiny stellate neurons in layer IV of the human auditory cortex. A Golgi study. Neuroscience, 33(3), 489498. https://doi.org/10.1016/0306-4522(89)90401-6CrossRefGoogle ScholarPubMed
Miller, G. L., & Knudsen, E. I. (2003). Adaptive plasticity in the auditory thalamus of juvenile barn owls. Journal of Neuroscience, 23(3), 1059. https://doi.org/10.1523/JNEUROSCI.23-03-01059.2003Google Scholar
Miwa, J. M., Ibaňez-Tallon, I., Crabtree, G. W., Sánchez, R., Šali, A., Role, L. W., & Heintz, N. (1999). lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron, 23(1), 105114. https://doi.org/10.1016/S0896-6273(00)80757-6Google Scholar
Moore, D. R. (2007). Auditory processing disorders: acquisition and treatment. Journal of Communication Disorders, 40(4), 295304. https://doi.org/10.1016/J.JCOMDIS.2007.03.005Google Scholar
Moore, D. R., Hine, J. E., Jiang, Z. D., Matsuda, H., Parsons, C. H., & King, A. J. (1999). Conductive hearing loss produces a reversible binaural hearing impairment. Journal of Neuroscience, 19(19), 87048711. https://doi.org/10.1523/JNEUROSCI.19-19-08704.1999Google Scholar
Moore, S., Meschkat, M., Ruhwedel, T., Trevisiol, A., Tzvetanova, I. D., Battefeld, A., Kusch, K., Kole, M. H. P., Strenzke, N., Möbius, W., de Hoz, L., & Nave, K. A. (2020). A role of oligodendrocytes in information processing. Nature Communications, 11(1). https://doi.org/10.1038/S41467-020-19152-7Google Scholar
Morales, B., Choi, S. Y., & Kirkwood, A. (2002). Dark rearing alters the development of GABAergic transmission in visual cortex. Journal of Neuroscience, 22(18), 80848090. https://doi.org/10.1523/JNEUROSCI.22-18-08084.2002Google Scholar
Morishita, H., & Hensch, T. K. (2008). Critical period revisited: impact on vision. Current Opinion in Neurobiology, 18(1), 101107. https://doi.org/10.1016/J.CONB.2008.05.009Google Scholar
Morishita, H., Miwa, J. M., Heintz, N., & Hensch, T. K. (2010). Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science, 330(6008), 12381240. https://doi.org/10.1126/SCIENCE.1195320Google Scholar
Mowery, T. M., Caras, M. L., Hassan, S. I., Wang, D. J., Dimidschstein, J., Fishell, G., & Sanes, D. H. (2019). Preserving inhibition during developmental hearing loss rescues auditory learning and perception. Journal of Neuroscience, 39(42), 83478361. https://doi.org/10.1523/jneurosci.0749-19.2019Google Scholar
Mowery, T. M., Kotak, V. C., & Sanes, D. H. (2015). Transient hearing loss within a critical period causes persistent changes to cellular properties in adult auditory cortex. Cerebral Cortex, 25(8), 20832094. https://doi.org/10.1093/CERCOR/BHU013Google Scholar
Müller-Preuss, P., Flachskamm, C., & Bieser, A. (1994). Neural encoding of amplitude modulation within the auditory midbrain of squirrel monkeys. Hearing Research, 80(2), 197208. https://doi.org/10.1016/0378-5955(94)90111-2Google Scholar
Myakhar, O., Unichenko, P., & Kirischuk, S. (2011). GABAergic projections from the subplate to Cajal-Retzius cells in the neocortex. NeuroReport, 22(11), 525529. https://doi.org/10.1097/WNR.0B013E32834888A4Google Scholar
Nakahara, H., Zhang, L. I., & Merzenich, M. M. (2004). Specialization of primary auditory cortex processing by sound exposure in the “critical period.Proceedings of the National Academy of Sciences of the United States of America, 101(18), 71707174. https://doi.org/10.1073/PNAS.0401196101Google Scholar
Natan, R. G., Briguglio, J. J., Mwilambwe-Tshilobo, L., Jones, S. I., Aizenberg, M., Goldberg, E. M., & Geffen, M. N. (2015). Complementary control of sensory adaptation by two types of cortical interneurons. eLife, 4. https://doi.org/10.7554/eLife.09868Google Scholar
Nelson, A., Schneider, D. M., Takatoh, J., Sakurai, K., Wang, F., & Mooney, R. (2013). A circuit for motor cortical modulation of auditory cortical activity. Journal of Neuroscience, 33(36), 1434214353. https://doi.org/10.1523/JNEUROSCI.2275-13.2013Google Scholar
Noreña, A. J., Tomita, M., & Eggermont, J. J. (2003). Neural changes in cat auditory cortex after a transient pure-tone trauma. Journal of Neurophysiology, 90(4), 23872401. https://doi.org/10.1152/JN.00139.2003Google Scholar
Norman-Haignere, S., Kanwisher, N. G., & McDermott, J. H. (2015). Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron, 88(6), 12811296. https://doi.org/10.1016/J.NEURON.2015.11.035Google Scholar
Novák, O., Zelenka, O., Hromádka, T., & Syka, J. (2016). Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent. Journal of Neurophysiology, 115(4), 18601874. https://doi.org/10.1152/JN.00810.2015Google Scholar
Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307(5950), 462465. https://doi.org/10.1038/307462A0Google Scholar
Otazu, G. H., Tai, L. H., Yang, Y., & Zador, A. M. (2009). Engaging in an auditory task suppresses responses in auditory cortex. Nature Neuroscience, 12(5), 646654. https://doi.org/10.1038/NN.2306Google Scholar
Overath, T., McDermott, J. H., Zarate, J. M., & Poeppel, D. (2015). The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nature Neuroscience, 18(6), 903911. https://doi.org/10.1038/NN.4021Google Scholar
Parras, G. G., Nieto-Diego, J., Carbajal, G. v., Valdés-Baizabal, C., Escera, C., & Malmierca, M. S. (2017). Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nature Communications, 8(1). https://doi.org/10.1038/S41467-017-02038-6Google Scholar
Parsons, C. H., Lanyon, R. G., Schnupp, J. W. H., & King, A. J. (1999). Effects of altering spectral cues in infancy on horizontal and vertical sound localization by adult ferrets. Journal of Neurophysiology, 82(5), 22942309. https://doi.org/10.1152/JN.1999.82.5.2294Google Scholar
Patton, M. H., Blundon, J. A., & Zakharenko, S. S. (2019). Rejuvenation of plasticity in the brain: opening the critical period. Current Opinion in Neurobiology, 54, 8389. https://doi.org/10.1016/J.CONB.2018.09.003Google Scholar
Pereira, A. G., Farias, M., & Moita, M. A. (2020). Thalamic, cortical, and amygdala involvement in the processing of a natural sound cue of danger. PLoS Biology, 18(5). https://doi.org/10.1371/JOURNAL.PBIO.3000674Google Scholar
Persic, D., Thomas, M. E., Pelekanos, V., Ryugo, D. K., Takesian, A. E., Krumbholz, K., & Pyott, S. J. (2020). Regulation of auditory plasticity during critical periods and following hearing loss. Hearing Research, 397, 107976. https://doi.org/10.1016/j.heares.2020.107976Google Scholar
Peruzzi, D., Bartlett, E., Smith, P. H., & Oliver, D. L. (1997). A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. Journal of Neuroscience, 17(10), 37663777. https://doi.org/10.1523/JNEUROSCI.17-10-03766.1997Google Scholar
Peters, A., & Kara, D. A. (1985). The neuronal composition of area 17 of rat visual cortex. I. The pyramidal cells. Journal of Comparative Neurology, 234(2), 218241. https://doi.org/10.1002/CNE.902340208Google Scholar
Petratos, S., Theotokis, P., Kim, M. J., Azari, M. F., & Lee, J. Y. (2020). That’s a wrap! Molecular drivers governing neuronal NoGo receptor-dependent myelin plasticity and integrity. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.00227Google Scholar
Pfeffer, C. K., Xue, M., He, M., Huang, Z. J., & Scanziani, M. (2013). Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nature Neuroscience, 16(8), 10681076. https://doi.org/10.1038/nn.3446Google Scholar
Pienkowski, M., & Eggermont, J. J. (2011). Cortical tonotopic map plasticity and behavior. Neuroscience and Biobehavioral Reviews, 35(10), 21172128. https://doi.org/10.1016/J.NEUBIOREV.2011.02.002Google Scholar
Pienkowski, M., Munguia, R., & Eggermont, J. J. (2011). Passive exposure of adult cats to bandlimited tone pip ensembles or noise leads to long-term response suppression in auditory cortex. Hearing Research, 277(1–2), 117126. https://doi.org/10.1016/J.HEARES.2011.02.002Google Scholar
Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience, 26(18), 49704982. https://doi.org/10.1523/jneurosci.3771-05.2006Google Scholar
Polley, D. B., Thompson, J. H., & Guo, W. (2013). Brief hearing loss disrupts binaural integration during two early critical periods of auditory cortex development. Nature Communications, 4, 2547. https://doi.org/10.1038/ncomms3547Google Scholar
Popescu, M. v, & Polley, D. B. (2010). Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex. Neuron, 65(5), 718731. https://doi.org/10.1016/j.neuron.2010.02.019Google Scholar
Price, D. J., Aslam, S., Tasker, L., & Gillies, K. (1997). Fates of the earliest generated cells in the developing murine neocortex. Journal of Comparative Neurology, 377, 414422.Google Scholar
Qiu, C. X., Salvi, R., Ding, D., & Burkard, R. (2000). Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hearing Research, 139(1–2), 153171. https://doi.org/10.1016/S0378-5955(99)00171-9Google Scholar
Quirk, G. J., Repa, J. C., & LeDoux, J. E. (1995). Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron, 15(5), 10291039. https://doi.org/10.1016/0896-6273(95)90092-6Google Scholar
Rabang, C. F., & Bartlett, E. L. (2011). A computational model of cellular mechanisms of temporal coding in the medial geniculate body (MGB). PLoS ONE, 6(12). https://doi.org/10.1371/JOURNAL.PONE.0029375Google Scholar
Raggio, M. W., & Schreiner, C. E. (1999). Neuronal responses in cat primary auditory cortex to electrical cochlear stimulation. III. Activation patterns in short- and long-term deafness. Journal of Neurophysiology, 82(6), 35063526. https://doi.org/10.1152/JN.1999.82.6.3506Google Scholar
Razak, K. A., & Fuzessery, Z. M. (2010). Development of parallel auditory thalamocortical pathways for two different behaviors. Frontiers in Neuroanatomy, 4. https://doi.org/10.3389/fnana.2010.00134Google Scholar
Razak, K. A., & Fuzessery, Z. M. (2015). Development of echolocation calls and neural selectivity for echolocation calls in the pallid bat. Developmental Neurobiology, 75(10), 11251139. https://doi.org/10.1002/DNEU.22226Google Scholar
Razak, K. A., Richardson, M. D., & Fuzessery, Z. M. (2008). Experience is required for the maintenance and refinement of FM sweep selectivity in the developing auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 105(11), 44654470. https://doi.org/10.1073/PNAS.0709504105Google Scholar
Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87103. https://doi.org/10.1523/JNEUROSCI.13-01-00087.1993Google Scholar
Reed, A., Riley, J., Carraway, R., Carrasco, A., Perez, C., Jakkamsetti, V., & Kilgard, M. P. (2011). Cortical map plasticity improves learning but is not necessary for improved performance. Neuron, 70(1), 121131. https://doi.org/10.1016/J.NEURON.2011.02.038Google Scholar
Reep, R. L. (2000). Cortical layer VII and persistent subplate cells in mammalian brains. Brain, Behavior and Evolution, 56(4), 212234. https://doi.org/10.1159/000047206Google Scholar
Reinhold, K., Lien, A. D., & Scanziani, M. (2015). Distinct recurrent versus afferent dynamics in cortical visual processing. Nature Neuroscience, 18(12), 17891797. https://doi.org/10.1038/NN.4153Google Scholar
Resnik, J., & Polley, D. B. (2017). Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage. eLife, 6. https://doi.org/10.7554/eLife.21452Google Scholar
Richardson, B. D., Sottile, S. Y., & Caspary, D. M. (2021). Mechanisms of GABAergic and cholinergic neurotransmission in auditory thalamus: impact of aging. Hearing Research, 402, 108003. https://doi.org/10.1016/j.heares.2020.108003Google Scholar
Richardson, R. J., Blundon, J. A., Bayazitov, I. T., & Zakharenko, S. S. (2009). Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. Journal of Neuroscience, 29(20), 64066417. https://doi.org/10.1523/JNEUROSCI.0258-09.2009Google Scholar
Robert, B., Kimchi, E. Y., Watanabe, Y., Chakoma, T., Jing, M., Li, Y., & Polley, D. B. (2021). A functional topography within the cholinergic basal forebrain for processing sensory cues associated with reward and punishment. BioRxiv, 2021.04.16.439895. https://doi.org/10.1101/2021.04.16.439895Google Scholar
Robertson, D., & Irvine, D. R. F. (1989). Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. Journal of Comparative Neurology, 282(3), 456471. https://doi.org/10.1002/CNE.902820311Google Scholar
Romand, R., & Ehret, G. (1990). development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice. Developmental Brain Research, 54(2), 221234.Google Scholar
Rose, H. J., & Metherate, R. (2005). Auditory thalamocortical transmission is reliable and temporally precise. Journal of Neurophysiology, 94(3), 20192030. https://doi.org/10.1152/JN.00860.2004Google Scholar
Rose, J. E., & Woolsey, C. N. (1949a). Organization of the mammalian thalamus and its relationships to the cerebral cortex. Electroencephalography and Clinical Neurophysiology, 1(1–4), 391404. https://doi.org/10.1016/0013-4694(49)90212-6Google Scholar
Rose, J. E., & Woolsey, C. N. (1949b). The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. Journal of Comparative Neurology, 91(3), 441466.Google Scholar
Rosen, M. J., Sarro, E. C., Kelly, J. B., & Sanes, D. H. (2012). Diminished behavioral and neural sensitivity to sound modulation is associated with moderate developmental hearing loss. PLoS ONE, 7(7). https://doi.org/10.1371/JOURNAL.PONE.0041514Google Scholar
Rosen, M. J., Semple, M. N., & Sanes, D. H. (2010). Exploiting development to evaluate auditory encoding of amplitude modulation. Journal of Neuroscience, 30(46), 1550915520. https://doi.org/10.1523/JNEUROSCI.3340-10.2010Google Scholar
Rummell, B. P., Klee, J. L., & Sigurdsson, T. (2016). Attenuation of responses to self-generated sounds in auditory cortical neurons. Journal of Neuroscience, 36(47), 1201012026. https://doi.org/10.1523/JNEUROSCI.1564-16.2016Google Scholar
Rumpel, S., Hatt, H., & Gottmann, K. (1998). Silent synapses in the developing rat visual cortex: Evidence for postsynaptic expression of synaptic plasticity. Journal of Neuroscience, 18(21), 88638874. https://doi.org/10.1523/JNEUROSCI.18-21-08863.1998Google Scholar
Runyan, C. A., Piasini, E., Panzeri, S., & Harvey, C. D. (2017). Distinct timescales of population coding across cortex. Nature, 548(7665), 9296. https://doi.org/10.1038/NATURE23020Google Scholar
Ryan, A. F., Miller, J. M., Pfingst, B. E., & Martin, G. K. (1984). Effects of reaction time performance on single-unit activity in the central auditory pathway of the rhesus macaque. Journal of Neuroscience, 4(1), 298308. https://doi.org/10.1523/JNEUROSCI.04-01-00298.1984Google Scholar
Saab, A. S., Tzvetavona, I. D., Trevisiol, A., Baltan, S., Dibaj, P., Kusch, K., Möbius, W., Goetze, B., Jahn, H. M., Huang, W., Steffens, H., Schomburg, E. D., Pérez-Samartín, A., Pérez-Cerdá, F., Bakhtiari, D., Matute, C., Löwel, S., Griesinger, C., Hirrlinger, J., … Nave, K. A. (2016). Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron, 91(1), 119132. https://doi.org/10.1016/J.NEURON.2016.05.016Google Scholar
Sadaka, Y., Weinfeld, E., Lev, D. L., & White, E. L. (2003). Changes in mouse barrel synapses consequent to sensory deprivation from birth. Journal of Comparative Neurology, 457(1), 7586. https://doi.org/10.1002/CNE.10518Google Scholar
Saderi, D., Schwartz, Z. P., Heller, C. R., Pennington, J. R., & David, S. v. (2021). Dissociation of task engagement and arousal effects in auditory cortex and midbrain. eLife, 10, 125. https://doi.org/10.7554/ELIFE.60153Google Scholar
Salami, M., Itami, C., Tsumoto, T., & Kimura, F. (2003). Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 61746179. https://doi.org/10.1073/PNAS.0937380100Google Scholar
Sametsky, E. A., Turner, J. G., Larsen, D., Ling, L., & Caspary, D. M. (2015). Enhanced GABAA-Mediated tonic inhibition in auditory thalamus of rats with behavioral evidence of tinnitus. Journal of Neuroscience, 35(25), 93699380. https://doi.org/10.1523/JNEUROSCI.5054-14.2015Google Scholar
Sanes, D. H., & Bao, S. (2009). Tuning up the developing auditory CNS. Current Opinion in Neurobiology, 19(2), 188199. https://doi.org/10.1016/J.CONB.2009.05.014Google Scholar
Sanes, D. H., Merickel, M., & Rubel, E. W. (1989). Evidence for an alteration of the tonotopic map in the gerbil cochlea during development. Journal of Comparative Neurology, 279(3), 436444. https://doi.org/10.1002/CNE.902790308Google Scholar
Sanes, D. H., & Woolley, S. M. N. (2011). A behavioral framework to guide research on central auditory development and plasticity. Neuron, 72(6), 912929. https://doi.org/10.1016/J.NEURON.2011.12.005Google Scholar
Sarro, E. C., & Sanes, D. H. (2010). Prolonged maturation of auditory perception and learning in gerbils. Developmental Neurobiology, 70(9), 636648. https://doi.org/10.1002/DNEU.20801Google Scholar
Sarro, E. C., von Trapp, G., Mowery, T. M., Kotak, V. C., & Sanes, D. H. (2015). Cortical synaptic inhibition declines during auditory learning. Journal of Neuroscience, 35(16), 63186325. https://doi.org/10.1523/JNEUROSCI.4051-14.2015Google Scholar
Scala, F., Kobak, D., Shan, S., Bernaerts, Y., Laturnus, S., Cadwell, C. R., Hartmanis, L., Froudarakis, E., Castro, J. R., Tan, Z. H., Papadopoulos, S., Patel, S. S., Sandberg, R., Berens, P., Jiang, X., & Tolias, A. S. (2019). Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas. Nature Communications, 10(1). https://doi.org/10.1038/S41467-019-12058-ZGoogle Scholar
Schmitt, L. I., Wimmer, R. D., Nakajima, M., Happ, M., Mofakham, S., & Halassa, M. M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature, 545(7653), 219223. https://doi.org/10.1038/NATURE22073Google Scholar
Schneider, D. M., & Mooney, R. (2018). How movement modulates hearing. Annual Review of Neuroscience, 41, 553572. https://doi.org/10.1146/ANNUREV-NEURO-072116-031215Google Scholar
Schneider, D. M., Nelson, A., & Mooney, R. (2014). A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature, 513(7517), 189194. https://doi.org/10.1038/nature13724Google Scholar
Schneider, D. M., Sundararajan, J., & Mooney, R. (2018). A cortical filter that learns to suppress the acoustic consequences of movement. Nature, 561(7723), 391395. https://doi.org/10.1038/S41586-018-0520-5Google Scholar
Schreiner, C. E., & Polley, D. B. (2014). Auditory map plasticity: diversity in causes and consequences. Current Opinion in Neurobiology, 24(1), 143156. https://doi.org/10.1016/j.conb.2013.11.009Google Scholar
Schwartz, Z. P., & David, S. v. (2018). Focal suppression of distractor sounds by selective attention in auditory cortex. Cerebral Cortex, 28(1), 323339. https://doi.org/10.1093/CERCOR/BHX288Google Scholar
Seidl, A. H., & Grothe, B. (2005). Development of sound localization mechanisms in the Mongolian gerbil is shaped by early acoustic experience. Journal of Neurophysiology, 94(2), 10281036. https://doi.org/10.1152/JN.01143.2004Google Scholar
Seki, S., & Eggermont, J. J. (2003). Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hearing Research, 180(1–2), 2838. https://doi.org/10.1016/S0378-5955(03)00074-1Google Scholar
Shaheen, L. A., Slee, S. J., & David, S. V. (2021). Task engagement improves neural discriminability in the auditory midbrain of the marmoset monkey. Journal of Neuroscience, 41(2), 284297. https://doi.org/10.1523/JNEUROSCI.1112-20.2020Google Scholar
Sharma, A., Dorman, M. F., & Spahr, A. J. (2002). A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear and Hearing, 23(6), 532539. https://doi.org/10.1097/00003446-200212000-00004Google Scholar
Shepard, K. N., Liles, L. C., Weinshenker, D., & Liu, R. C. (2015). Norepinephrine is necessary for experience-dependent plasticity in the developing mouse auditory cortex. Journal of Neuroscience, 35(6), 24322437. https://doi.org/10.1523/JNEUROSCI.0532-14.2015Google Scholar
Sinclair, J. L., Fischl, M. J., Alexandrova, O., Heβ, M., Grothe, B., Leibold, C., & Kopp-Scheinpflug, C. (2017). Sound-evoked activity influences myelination of brainstem axons in the trapezoid body. Journal of Neuroscience, 37(34), 82398255. https://doi.org/10.1523/JNEUROSCI.3728-16.2017Google Scholar
Singla, S., Dempsey, C., Warren, R., Enikolopov, A. G., & Sawtell, N. B. (2017). A cerebellum-like circuit in the auditory system cancels responses to self-generated sounds. Nature Neuroscience, 20(7), 943950. https://doi.org/10.1038/NN.4567Google Scholar
Smith, P. H., & Populin, L. C. (2001). Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. Journal of Comparative Neurology, 436(4), 508519. https://doi.org/10.1002/CNE.1084Google Scholar
Smith, P. H., Uhlrich, D. J., Manning, K. A., & Banks, M. I. (2012). Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. Journal of Comparative Neurology, 520(1), 3451. https://doi.org/10.1002/cne.22682Google Scholar
Sottile, S. Y., Hackett, T. A., Cai, R., Ling, L., Llano, D. A., & Caspary, D. M. (2017). Presynaptic neuronal nicotinic receptors differentially shape select inputs to auditory thalamus and are negatively impacted by aging. Journal of Neuroscience, 37(47), 1137711389. https://doi.org/10.1523/JNEUROSCI.1795-17.2017Google Scholar
Sottile, S. Y., Ling, L., Cox, B. C., & Caspary, D. M. (2017). Impact of ageing on postsynaptic neuronal nicotinic neurotransmission in auditory thalamus. Journal of Physiology, 595(15), 53755385. https://doi.org/10.1113/JP274467Google Scholar
Stoilova, V. v., Knauer, B., Berg, S., Rieber, E., Jäkel, F., & Stüttgen, M. C. (2020). Auditory cortex reflects goal-directed movement but is not necessary for behavioral adaptation in sound-cued reward tracking. Journal of Neurophysiology, 124(4), 10561071. https://doi.org/10.1152/JN.00736.2019Google Scholar
Sun, H., Takesian, A. E., Wang, T. T., Lippman-Bell, J. J., Hensch, T. K., & Jensen, F. E. (2018). Early seizures prematurely unsilence auditory synapses to disrupt thalamocortical critical period plasticity. Cell Reports, 23(9), 25332540. https://doi.org/10.1016/j.celrep.2018.04.108Google Scholar
Sun, Y. J., Liu, B. H., Tao, H. W., & Zhang, L. I. (2019). Selective strengthening of intracortical excitatory input leads to receptive field refinement during auditory cortical development. Journal of Neuroscience, 39(7), 11951205. https://doi.org/10.1523/JNEUROSCI.2492-18.2018Google Scholar
Sun, Y. J., Wu, G. K., Liu, B. H., Li, P., Zhou, M., Xiao, Z., Tao, H. W., & Zhang, L. I. (2010). Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development. Nature, 465(7300), 927931.Google Scholar
Takesian, A. E., Bogart, L. J., Lichtman, J. W., & Hensch, T. K. (2018). Inhibitory circuit gating of auditory critical-period plasticity. Nature Neuroscience, 21(2), 218227. https://doi.org/10.1038/s41593-017-0064-2Google Scholar
Takesian, A. E., & Hensch, T. K. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research, 207, 334. https://doi.org/10.1016/B978-0-444-63327-9.00001-1Google Scholar
Takesian, A. E., Kotak, V. C., & Sanes, D. H. (2009). Developmental hearing loss disrupts synaptic inhibition: Implications for auditory processing. Future Neurology, 4(3), 331349. https://doi.org/10.2217/FNL.09.5Google Scholar
Takesian, A. E., Kotak, V. C., & Sanes, D. H. (2010). Presynaptic GABA(B) receptors regulate experience-dependent development of inhibitory short-term plasticity. Journal of Neuroscience, 30(7), 27162727. https://doi.org/10.1523/jneurosci.3903-09.2010Google Scholar
Takesian, A. E., Kotak, V. C., & Sanes, D. H. (2012). Age-dependent effect of hearing loss on cortical inhibitory synapse function. Journal of Neurophysiology, 107(3), 937947. https://doi.org/10.1152/jn.00515.2011Google Scholar
Takesian, A. E., Kotak, V. C., Sharma, N., & Sanes, D. H. (2013). Hearing loss differentially affects thalamic drive to two cortical interneuron subtypes. Journal of Neurophysiology, 110(4), 9991008. https://doi.org/10.1152/jn.00182.2013Google Scholar
Tan, A. Y. Y., & Wehr, M. (2009). Balanced tone-evoked synaptic excitation and inhibition in mouse auditory cortex. Neuroscience, 163(4), 13021315. https://doi.org/10.1016/J.NEUROSCIENCE.2009.07.032Google Scholar
Tan, A. Y. Y., Zhang, L. I., Merzenich, M. M., & Schreiner, C. E. (2004). Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. Journal of Neurophysiology, 92(1), 630643. https://doi.org/10.1152/JN.01020.2003Google Scholar
Tan, Z., Hu, H., Huang, Z. J., & Agmon, A. (2008). Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons. Proceedings of the National Academy of Sciences of the United States of America, 105(6). www.pnas.orgcgidoi10.1073pnas.0710628105Google Scholar
Tasaka, G. ichi, Feigin, L., Maor, I., Groysman, M., DeNardo, L. A., Schiavo, J. K., Froemke, R. C., Luo, L., & Mizrahi, A. (2020). The temporal association cortex plays a key role in auditory-driven maternal plasticity. Neuron, 107(3), 566–579.e7. https://doi.org/10.1016/J.NEURON.2020.05.004Google Scholar
Taylor, J. A., Hasegawa, M., Benoit, C. M., Freire, J. A., Theodore, M., Ganea, D. A., Innocenti, S. M., Lu, T., & Gründemann, J. (2021). Single cell plasticity and population coding stability in auditory thalamus upon associative learning. Nature Communications, 12(1). https://doi.org/10.1038/S41467-021-22421-8Google Scholar
Tennigkeit, F., Schwarz, D. W. F., & Puil, E. (1998a). Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus. Neuroscience, 83(4), 10631073. https://doi.org/10.1016/S0306-4522(97)00458-2Google Scholar
Tennigkeit, F., Schwarz, D. W. F., & Puil, E. (1998b). Postnatal development of signal generation in auditory thalamic neurons. Developmental Brain Research, 109(2), 255263. https://doi.org/10.1016/S0165-3806(98)00056-XGoogle Scholar
Thomas, M. E., Friedman, N. H. M., Cisneros-Franco, J. M., Ouellet, L., & de Villers-Sidani, É. (2019). The prolonged masking of temporal acoustic inputs with noise drives plasticity in the adult rat auditory cortex. Cerebral Cortex, 29(3), 10321046. https://doi.org/10.1093/CERCOR/BHY009Google Scholar
Tomassy, G. S., Berger, D. R., Chen, H. H., Kasthuri, N., Hayworth, K. J., Vercelli, A., Seung, H. S., Lichtman, J. W., & Arlotta, P. (2014). Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science, 344(6181), 319324. https://doi.org/10.1126/SCIENCE.1249766Google Scholar
Torii, M., Hackett, T. A., Rakic, P., Levitt, P., & Polley, D. B. (2013). EphA signaling impacts development of topographic connectivity in auditory corticofugal systems. Cerebral Cortex, 23(4), 775785. https://doi.org/10.1093/cercor/bhs066Google Scholar
Torres-Reveron, J., & Friedlander, M. (2007). Properties of persistent postnatal cortical subplate neurons. Journal of Neuroscience, 27(37), 99629974. https://doi.org/10.1523/JNEUROSCI.1536-07.2007Google Scholar
Toyoizumi, T., Miyamoto, H., Yazaki-Sugiyama, Y., Atapour, N., Hensch, T. K., & Miller, K. D. (2013). A Theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity. Neuron, 80(1), 5163. https://doi.org/10.1016/J.NEURON.2013.07.022Google Scholar
Tsunada, J., Liu, A. S. K., Gold, J. I., & Cohen, Y. E. (2016). Causal contribution of primate auditory cortex to auditory perceptual decision-making. Nature Neuroscience, 19(1), 135142. https://doi.org/10.1038/nn.4195Google Scholar
Valverde, F., Facal‐valverde, M. V., Santacana, M., & Heredia, M. (1989). Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: A correlated Golgi and autoradiographic study. Journal of Comparative Neurology, 290(1), 118140.Google Scholar
Vandevelde, I. L., Duckworth, E., & Reep, R. L. (1996). Layer VII and the gray matter trajectories of corticocortical axons in rats. Anatomy and Embryology, 194(6), 581593. https://doi.org/10.1007/BF00187471Google Scholar
Venkataraman, Y., & Bartlett, E. L. (2013). Postnatal development of synaptic properties of the GABAergic projection from the inferior colliculus to the auditory thalamus. Journal of Neurophysiology, 109(12), 28662882.Google Scholar
Venkataraman, Y., & Bartlett, E. L. (2014). Postnatal development of auditory central evoked responses and thalamic cellular properties. Developmental Neurobiology, 74(5), 541555. https://doi.org/10.1002/DNEU.22148Google Scholar
Viswanathan, S., Bandyopadhyay, S., Kao, J. P. Y., & Kanold, P. O. (2012). Changing microcircuits in the subplate of the developing cortex. Journal of Neuroscience, 32(5), 15891601. https://doi.org/10.1523/JNEUROSCI.4748-11.2012Google Scholar
Viswanathan, S., Sheikh, A., Looger, L. L., & Kanold, P. O. (2017). Molecularly defined subplate neurons project both to thalamocortical recipient layers and thalamus. Cerebral Cortex, 27(10), 47594768. https://doi.org/10.1093/CERCOR/BHW271Google Scholar
Voss, P., Thomas, M. E., Cisneros-Franco, J. M., & de Villers-Sidani, É. (2017). Dynamic brains and the changing rules of neuroplasticity: implications for learning and recovery. Frontiers in Psychology, 8. https://doi.org/10.3389/FPSYG.2017.01657Google Scholar
Wang, D. D., & Kriegstein, A. R. (2009). Defining the role of GABA in cortical development. Journal of Physiology, 587(9), 18731879. https://doi.org/10.1113/JPHYSIOL.2008.167635Google Scholar
Wang, H. C., & Bergles, D. E. (2015). Spontaneous activity in the developing auditory system. Cell and Tissue Research, 361(1), 6575. https://doi.org/10.1007/S00441-014-2007-5Google Scholar
Wang, X., Lu, T., Bendor, D., & Bartlett, E. (2008). Neural coding of temporal information in auditory thalamus and cortex. Neuroscience, 157(2), 484493. https://doi.org/10.1016/J.NEUROSCIENCE.2008.07.050Google Scholar
Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442446. https://doi.org/10.1038/NATURE02116Google Scholar
Wess, J. M., Isaiah, A., Watkins, P. v., & Kanold, P. O. (2017). Subplate neurons are the first cortical neurons to respond to sensory stimuli. Proceedings of the National Academy of Sciences of the United States of America, 114(47), 1260212607. https://doi.org/10.1073/PNAS.1710793114Google Scholar
Whitton, J. P., & Polley, D. B. (2011). Evaluating the perceptual and pathophysiological consequences of auditory deprivation in early postnatal life: a comparison of basic and clinical studies. Journal of the Association for Research in Otolaryngology, 12(5), 535547. https://doi.org/10.1007/s10162-011-0271-6Google Scholar
Williamson, R. S., Hancock, K. E., Shinn-Cunningham, B. G., & Polley, D. B. (2015). Locomotion and task demands differentially modulate thalamic audiovisual processing during active search. Current Biology, 25(14), 18851891. https://doi.org/10.1016/j.cub.2015.05.045Google Scholar
Williamson, R. S., & Polley, D. B. (2019). Parallel pathways for sound processing and functional connectivity among layer 5 and 6 auditory corticofugal neurons. eLife, 8. https://doi.org/10.7554/eLife.42974Google Scholar
Wilmington, D., Gray, L., & Jahrsdoerfer, R. (1994). Binaural processing after corrected congenital unilateral conductive hearing loss. Hearing Research, 74(1–2), 99114. https://doi.org/10.1016/0378-5955(94)90179-1Google Scholar
Winer, J. A. (2006). Decoding the auditory corticofugal systems. Hearing Research, 212(1–2), 18. https://doi.org/10.1016/J.HEARES.2005.06.014Google Scholar
Winer, J. A., Diehl, J. J., & Larue, D. T. (2001). Projections of auditory cortex to the medial geniculate body of the cat. Journal of Comparative Neurology, 430, 2755.Google Scholar
Winer, J. A., & Lee, C. C. (2007). The distributed auditory cortex. Hearing Research, 229(1–2), 313. https://doi.org/10.1016/j.heares.2007.01.017Google Scholar
Winer, J. A., Miller, L. M., Lee, C. C., & Schreiner, C. E. (2005). Auditory thalamocortical transformation: structure and function. Trends in Neuroscience, 28(5), 255263. https://doi.org/10.1016/j.tins.2005.03.009Google Scholar
Xin, Y., Zhong, L., Zhang, Y., Zhou, T., Pan, J., & Xu, N. long. (2019). Sensory-to-Category transformation via dynamic reorganization of ensemble structures in mouse auditory cortex. Neuron, 103(5), 909–921.e6. https://doi.org/10.1016/J.NEURON.2019.06.004Google Scholar
Xiong, X. R., Liang, F., Zingg, B., Ji, X. Y., Ibrahim, L. A., Tao, H. W., & Zhang, L. I. (2015). Auditory cortex controls sound-driven innate defense behaviour through corticofugal projections to inferior colliculus. Nature Communications, 6. https://doi.org/10.1038/NCOMMS8224Google Scholar
Xu, H., Kotak, V. C., & Sanes, D. H. (2010). Normal hearing is required for the emergence of long-lasting inhibitory potentiation in cortex. Journal of Neuroscience, 30(1), 331341. https://doi.org/10.1523/JNEUROSCI.4554-09.2010Google Scholar
Xue, M., Atallah, B. v., & Scanziani, M. (2014). Equalizing excitation-inhibition ratios across visual cortical neurons. Nature, 511(7511), 596600. https://doi.org/10.1038/NATURE13321Google Scholar
Yang, E. J., Lin, E. W., & Hensch, T. K. (2012). Critical period for acoustic preference in mice. Proceedings of the National Academy of Sciences of the United States of America, 109(2), 1721317220. https://doi.org/10.1073/PNAS.1200705109Google Scholar
Yang, Y., Lee, J., & Kim, G. (2020). Integration of locomotion and auditory signals in the mouse inferior colliculus. eLife, 9. https://doi.org/10.7554/ELIFE.52228Google Scholar
Yin, T. C. T., Smith, P. H., & Joris, P. X. (2019). Neural mechanisms of binaural processing in the auditory brainstem. Comprehensive Physiology, 9(4), 15031575. https://doi.org/10.1002/CPHY.C180036Google Scholar
Zhang, L. I., Bao, S., & Merzenich, M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4(11), 11231130. https://doi.org/10.1038/nn745Google Scholar
Zhang, L. I., Bao, S., & Merzenich, M. M. (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 23092314. https://doi.org/10.1073/PNAS.261707398Google Scholar
Zhang, L. I., Tan, A. Y. Y., Schreiner, C. E., & Merzenich, M. M. (2003). Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature, 424(6945), 201205. https://doi.org/10.1038/NATURE01796Google Scholar
Zhao, C., Kao, J. P. Y., & Kanold, P. O. (2009). Functional excitatory microcircuits in neonatal cortex connect thalamus and layer 4. Journal of Neuroscience, 29(49), 1547915488. https://doi.org/10.1523/JNEUROSCI.4471-09.2009Google Scholar
Zheng, W. (2012). Auditory map reorganization and pitch discrimination in adult rats chronically exposed to low-level ambient noise. Frontiers in Systems Neuroscience, 114. https://doi.org/10.3389/FNSYS.2012.00065Google Scholar
Zhou, X., & Merzenich, M. M. (2012). Environmental noise exposure degrades normal listening processes. Nature Communications, 3, 843. https://doi.org/10.1038/ncomms1849Google Scholar
Zhou, X., Panizzutti, R., de Villers-Sidani, É., Madeira, C., & Merzenich, M. M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. Journal of Neuroscience, 31(15), 56255634. https://doi.org/10.1523/JNEUROSCI.6470-10.2011Google Scholar
Zhou, Y., Liu, B. hua, Wu, G. K., Kim, Y. J., Xiao, Z., Tao, H. W., & Zhang, L. I. (2010). Preceding inhibition silences layer 6 neurons in auditory cortex. Neuron, 65(5), 706717. https://doi.org/10.1016/J.NEURON.2010.02.021Google Scholar
Zljak, L., Uylings, H. B. M., Kostovic, I., & van Eden, C. G. (1992). Prenatal development of neurons in the human prefrontal cortex. II. A quantitative Golgi study. Journal of Comparative Neurology, 316(4), 485496. https://doi.org/10.1002/CNE.903160408Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×