Published online by Cambridge University Press: 11 August 2009
Abstract
Observations over the last decade have shown that neutron stars receive a large kick velocity (of order a few hundred to a thousand km s-1) at birth. The physical origin of the kicks and the related supernova asymmetry is one of the central unsolved mysteries of supernova research. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino — magnetic field driven, and electromagnetically driven kicks. The viabilities of the different kick mechanisms are directly related to the other key parameters characterizing nascent neutron stars, such as the initial magnetic field and the initial spin. Recent observational constraints on kick mechanisms are also discussed.
Evidence for neutron star kicks and supernova asymmetry
It has long been recognized that neutron stars (NSs) have space velocities much greater than their progenitors'. A natural explanation for such high velocities is that supernova (SN) explosions are asymmetric, and provide kicks to the nascent NSs. Evidence for NS kicks and NS asymmetry has recently become much stronger. The observations that support (or even require) NS kicks fall into three categories:
Large NS Velocities (≫ the progenitors' velocities ∼30 km s-1):
The study of pulsar proper motion give a mean birth velocity 200–500 km s-1 (Lorimer et al. 1997; Hansen & Phinney 1997; Cordes & Chernoff 1998; Arzoumanian et al. 2002), with possibly a significant population having V ≳ 1000 km s-1. While velocity of ∼100 km s-1 may in principle come from binary breakup in a supernova (without kick), higher velocities would require exceedingly tight presupernova binary.[…]
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.