Published online by Cambridge University Press: 11 August 2009
Abstract
Polarization and other observations indicate that supernova explosions are aspherical and often axisymmetric, implying a necessary departure from spherical models. Akiyama et al. investigated the effects of the magneto-rotational instability (MRI) on collapsing and rotating cores. Their results indicate that the MRI dynamo generates magnetic fields of greater than the Q.E.D. limit (4.4 × 1013 G). We present preliminary results of the effects of the super-strong magnetic field on degenerate electron pressure in core collapse.
Introduction
Although core collapse cannot be observed directly, except with neutrinos, observations of explosion ejecta can provide us with information about the explosion mechanism itself. Such observations indicate that explosions of core collapse supernovae are aspherical and often bipolar. HST observations clearly show that 1987A has aspherical ejecta for which the axis aligns roughly with the small axis of the rings (Pun et al. 2001; Wang et al. 2002). Spectropolarimetry is a powerful tool for probing ejecta asphericity, and it reveals that most, if not all, core collapse supernovae possesses asphericity and often times bipolar structure (Wang et al. 1996, 2001). Explosions of Type Ib and Ic are more strongly aspherical, while the asphericity of Type II supernovae increases with time as the ejecta expand and the photosphere recedes (Wang et al. 2001; Leonard et al. 2000, 2001). The indication is that it is the core collapse mechanism itself that is responsible for the asphericity.
The observational evidence of asphericity motivates the inclusion of rotation in core collapse physics.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.